Skip to main content

Scientists just recreated the universe's first ever molecules and the results challenge our understanding of the early cosmos

In a first, scientists have recreated the formation of the first ever molecules in the universe to learn more about early star formation.



For the first time, researchers have recreated the universe's first ever molecules by mimicking the conditions of the early universe.

The findings shake up our understanding of the origin of stars in the early universe and "calls for a reassessment of the helium chemistry in the early universe," the researchers wrote in the new study, published July 24 in the journal Astronomy and Astrophysics.

The first stars in the universe

Just after the Big Bang 13.8 billion years ago, the universe was subject to extremely high temperatures. A few seconds later, though, temperatures decreased enough for hydrogen and helium to form as the first ever elements. Hundreds of thousands of years after those elements formed, temperatures became cool enough for their atoms to combine with electrons in a variety of different configurations, forging molecules.

According to the researchers, a helium hydride ion or HeH+ became the first ever molecule. The ion is needed to form molecular hydrogen, now the most abundant molecule in the universe.

Both helium hydride ions and molecular hydrogen were critical to the development of the first stars hundreds of millions of years later, the researchers said.

For a protostar to begin fusion the process that enables stars to create their own energy atoms and molecules within it must collide with each other and release heat. This process is largely ineffective at temperatures under 18,000 degrees Fahrenheit (10,000 degrees Celsius).

However, helium hydride ions are particularly good at continuing the process, even under cool temperatures, and are considered to be a potentially integral factor of star formation in the early universe.

The amount of helium hydride ions in the universe may therefore have had significant bearing on the speed and efficacy of early star formation, the researchers said in a statement.

Far more important than previously assumed

In the new study, the researchers recreated early helium hydride reactions by storing the ions at minus 449 degrees Fahrenheit (minus 267 degrees Celsius) for up to 60 seconds to cool them down before forcing them to collide with heavy hydrogen. Researchers studied how the collisions similar to those that kickstart fusion in a star changed depending on the temperature of the particles.

They found that reaction rates between these particles do not slow down at lower temperatures, which contradicts older assumptions.

"Previous theories predicted a significant decrease in the reaction probability at low temperatures, but we were unable to verify this in either the experiment or new theoretical calculations," study co-author Holger Kreckel, who studies nuclear physics at the Max Planck Institute for Nuclear Physics in Germany, said in the statement.

This new finding of how helium hydride ions function challenges how physicists think stars formed in the early universe. Reactions between the ions and other atoms "appear to have been far more important for chemistry in the early universe than previously assumed," Kreckel said.

#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link :hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: supportteam@sciencefather.com

Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA
Tumblr : https://www.tumblr.com/blog/hepcs

Comments

Popular posts from this blog

Physicists observe a new form of magnetism for the first time

MIT physicists have demonstrated a new form of magnetism that could one day be harnessed to build faster, denser, and less power-hungry " spintronic " memory chips. The new magnetic state is a mash-up of two main forms of magnetism: the ferromagnetism of everyday fridge magnets and compass needles, and antiferromagnetism, in which materials have magnetic properties at the microscale yet are not macroscopically magnetized. Now, the MIT team has demonstrated a new form of magnetism , termed "p-wave magnetism." Physicists have long observed that electrons of atoms in regular ferromagnets share the same orientation of "spin," like so many tiny compasses pointing in the same direction. This spin alignment generates a magnetic field, which gives a ferromagnet its inherent magnetism. Electrons belonging to magnetic atoms in an antiferromagnet also have spin, although these spins alternate, with electrons orbiting neighboring atoms aligning their spins antiparalle...

new research in qauntum physics

         VISIT:https: //hep-conferences.sciencefather.com/          N ew research in  qauntum physics.                                                    Alphabet Has a Second, Secretive Quantum Computing Team Recent research in quantum physics includes the development of quantum computers, which are expected to be much more powerful than conventional computers and could revolutionize many aspects of technology, such as artificial intelligence and cryptography. Other research includes the development of quantum sensors for a variety of applications, including medical diagnostics, and the study of quantum entanglement and its potential to enable quantum computing and secure communication. Additionally, research is being conducted into the applications of quantum mechanics in materials science, such as unde...

Freezing light? Italian scientists froze fastest thing in universe, here’s how

In a rare occurrence, physics made it possible to control the fastest travelling element - light. Italian scientists have managed to freeze the light, as per reports. A recent study published in a British weekly journal reportedly revealed that light can exhibit ‘ supersolid behavior ’ a unique state of matter that flows without friction while retaining a solid-like structure. The research, led by Antonio Gianfate from CNR Nanotec and Davide Nigro from the University of Pavia, marks a significant step in understanding supersolidity in light. The scientists described their findings as “just the beginning” of this exploration, as per reports. In what can be termed as ‘manipulating photons under controlled quantum conditions ’, the scientists demonstrated that light, too, can exhibit this behaviour. (A photon is a bundle of electromagnetic energy which is massless, and travel at the speed of light) How did scientists freeze light? As we know, freezing involves lowering a liquid’s tempera...