Skip to main content

Quantum Tunneling Breakthrough: Technion Scientists Move Atoms With Precision



In a groundbreaking experiment at the Technion Faculty of Physics, researchers demonstrated the transfer of atoms via quantum tunneling using optical tweezers.

This novel method, which strategically avoids trapping atoms in the middle tweezer, represents a notable stride toward innovative quantum technologies.

Quantum Tunneling in Optical Tweezers

A new experiment at the Technion Faculty of Physics demonstrates how atoms can be transferred between locations using quantum tunneling with optical tweezers. Led by Prof. Yoav Sagi and doctoral student Yanay Florshaim from the Solid State Institute, this research was published recently in Science Advances.

The experiment relies on optical tweezers, a powerful tool that uses focused laser beams to trap and manipulate tiny particles like atoms, molecules, and even living cells. Here’s how it works: when light interacts with matter, it creates a force proportional to the light’s intensity. This force, though too weak to impact larger objects, is strong enough to hold or move microscopic particles like atoms. The groundbreaking invention of optical tweezers, which earned physicist Arthur Ashkin the 2018 Nobel Prize in Physics, has become a vital technique in modern physics.

Quantum Tunneling in Action

In the Technion experiment, researchers arranged three optical tweezers in a line. By adjusting the distance between each pair of adjacent tweezers, they were able to dynamically control the rate of quantum tunneling between them. Quantum tunneling, a phenomenon exclusive to the quantum world, allows particles to pass through barriers they couldn’t overcome in classical physics. By dynamically controlling this tunneling rate, the team successfully transferred atoms between the two outer tweezers with remarkable precision and efficiency.

Quantum Theory and Atom Transfer

In addition, the researchers showed that although the atoms move between both sides of the chain, the likelihood of finding them in the middle tweezer is very low. This intriguing feature of the transfer scheme can be understood by recalling that in quantum theory, a particle is described by a wave packet.

In the scheme demonstrated in the experiment, the waves interfere destructively in the middle trap, making it impossible to find the atoms there. This is the first demonstration of this transfer method, and the researchers believe it could represent a significant milestone in the development of new quantum platforms.

Website: International Research Awards on High Energy Physics and Computational Science.

#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Comments

Popular posts from this blog

Physicists observe a new form of magnetism for the first time

MIT physicists have demonstrated a new form of magnetism that could one day be harnessed to build faster, denser, and less power-hungry " spintronic " memory chips. The new magnetic state is a mash-up of two main forms of magnetism: the ferromagnetism of everyday fridge magnets and compass needles, and antiferromagnetism, in which materials have magnetic properties at the microscale yet are not macroscopically magnetized. Now, the MIT team has demonstrated a new form of magnetism , termed "p-wave magnetism." Physicists have long observed that electrons of atoms in regular ferromagnets share the same orientation of "spin," like so many tiny compasses pointing in the same direction. This spin alignment generates a magnetic field, which gives a ferromagnet its inherent magnetism. Electrons belonging to magnetic atoms in an antiferromagnet also have spin, although these spins alternate, with electrons orbiting neighboring atoms aligning their spins antiparalle...

new research in qauntum physics

         VISIT:https: //hep-conferences.sciencefather.com/          N ew research in  qauntum physics.                                                    Alphabet Has a Second, Secretive Quantum Computing Team Recent research in quantum physics includes the development of quantum computers, which are expected to be much more powerful than conventional computers and could revolutionize many aspects of technology, such as artificial intelligence and cryptography. Other research includes the development of quantum sensors for a variety of applications, including medical diagnostics, and the study of quantum entanglement and its potential to enable quantum computing and secure communication. Additionally, research is being conducted into the applications of quantum mechanics in materials science, such as unde...

Freezing light? Italian scientists froze fastest thing in universe, here’s how

In a rare occurrence, physics made it possible to control the fastest travelling element - light. Italian scientists have managed to freeze the light, as per reports. A recent study published in a British weekly journal reportedly revealed that light can exhibit ‘ supersolid behavior ’ a unique state of matter that flows without friction while retaining a solid-like structure. The research, led by Antonio Gianfate from CNR Nanotec and Davide Nigro from the University of Pavia, marks a significant step in understanding supersolidity in light. The scientists described their findings as “just the beginning” of this exploration, as per reports. In what can be termed as ‘manipulating photons under controlled quantum conditions ’, the scientists demonstrated that light, too, can exhibit this behaviour. (A photon is a bundle of electromagnetic energy which is massless, and travel at the speed of light) How did scientists freeze light? As we know, freezing involves lowering a liquid’s tempera...