Skip to main content

Scientists Create New Magnetic State: The Magneto-Ionic Vortex (“Vortion”)



By controlling this state, researchers can enable the development of smarter, reconfigurable, and energy-efficient devices that function like the brain.

Researchers at the Universitat Autònoma de Barcelona (UAB) have successfully created a new form of magnetic state known as a magneto-ionic vortex, or “vortion.” Their findings, published in Nature Communications, demonstrate an unprecedented ability to control magnetic properties at the nanoscale under normal room temperature conditions. This achievement could pave the way for next-generation magnetic technologies.

As the growth of Big Data continues, the energy needs of information technologies have risen sharply. In most systems, data is stored using electric currents, but this process generates excess heat and wastes energy. A more efficient approach is to control magnetic memory through voltage rather than current. Magneto-ionic materials make this possible by enabling their magnetic properties to be adjusted when ions are inserted or removed through voltage polarity changes. Up to now, research in this field has mainly focused on continuous films, instead of addressing the nanoscale “bits” that are vital for dense data storage.

At very small scales, unique magnetic behaviors can appear that are not seen in larger systems. One example is the magnetic vortex, a tiny whirlpool-like magnetic pattern. These structures play an important role in modern magnetic data recording and also have biomedical applications. However, once a vortex state is established in a material, it is usually very difficult to modify or requires significant amounts of energy to do so.

Combining Magneto-Ionics and Vortices

Researchers from the UAB Department of Physics, in collaboration with scientists from the ICMAB-CSIC, the ALBA Synchrotron and research institutions in Italy and the United States, propose a new solution that combines magneto-ionics and magnetic vortices. Researchers experimentally developed a new magnetic state that they have named magneto-ionic vortex, or “vortion.” This new object allows “on-demand” control of the magnetic properties of a nanodot (a dot of nanometric dimensions) with high precision. This is achieved by extracting nitrogen ions through the application of voltage, thus allowing for efficient control with very low energy consumption.

“This is a so far unexplored object at the nanoscale,” explains ICREA researcher in the UAB Department of Physics Jordi Sort, director of the research. “There is a great demand for controlling magnetic states at the nanoscale but, surprisingly, most of the research in magneto-ionics has so far focused on the study of films of continuous materials. If we look at the effects of ion displacement in discrete structures of nanometre dimensions, the ‘nanodots’ we have analysed, we see that very interesting dynamically evolving spin configurations appear, which are unique to these types of structures.”

These spin configurations and the magnetic properties of the vortices vary as a function of the duration of the applied voltage. Thus, different magnetic states (e.g., vortices with different properties or states with uniform magnetic orientation) can be generated from nanodots of an initially non-magnetic material by the gradual extraction of ions through the application of voltage.

“With the ‘vortions’ we developed, we can have unprecedented control of magnetic properties such as magnetisation, coercivity, remanence, anisotropy, or the critical fields at which vortions are formed or annihilated. These are fundamental properties for storing information in magnetic memories, which we are now able to control and tune in an analogue and reversible manner by a voltage-activated process with very low energy consumption,” explains Irena Spasojević, postdoctoral researcher in the UAB Department of Physics and first author of the paper. “The voltage actuation procedure, instead of using electric current, prevents heating in devices such as laptops, servers, and data centres, and it drastically reduces energy loss.”

Researchers have shown that by precisely controlling the thickness of the voltage-generated magnetic layer, the magnetic state of the material can be varied at will, in a controlled and reversible manner, between a non-magnetic state, a state with a uniform magnetic orientation (such as that found in a magnet), and the new magneto-ionic vortex state.

Ability to mimic the behaviour of neuronal synapses

This unprecedented level of control of magnetic properties at the nanoscale and at room temperature opens new horizons for the development of advanced magnetic devices with functionalities that can be tailored once the material has been synthesised. This provides greater flexibility which is needed to meet specific technological demands.

#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link :hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: supportteam@sciencefather.com

Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA
Tumblr : https://www.tumblr.com/blog/hepcs

Comments

Popular posts from this blog

Physicists observe a new form of magnetism for the first time

MIT physicists have demonstrated a new form of magnetism that could one day be harnessed to build faster, denser, and less power-hungry " spintronic " memory chips. The new magnetic state is a mash-up of two main forms of magnetism: the ferromagnetism of everyday fridge magnets and compass needles, and antiferromagnetism, in which materials have magnetic properties at the microscale yet are not macroscopically magnetized. Now, the MIT team has demonstrated a new form of magnetism , termed "p-wave magnetism." Physicists have long observed that electrons of atoms in regular ferromagnets share the same orientation of "spin," like so many tiny compasses pointing in the same direction. This spin alignment generates a magnetic field, which gives a ferromagnet its inherent magnetism. Electrons belonging to magnetic atoms in an antiferromagnet also have spin, although these spins alternate, with electrons orbiting neighboring atoms aligning their spins antiparalle...

new research in qauntum physics

         VISIT:https: //hep-conferences.sciencefather.com/          N ew research in  qauntum physics.                                                    Alphabet Has a Second, Secretive Quantum Computing Team Recent research in quantum physics includes the development of quantum computers, which are expected to be much more powerful than conventional computers and could revolutionize many aspects of technology, such as artificial intelligence and cryptography. Other research includes the development of quantum sensors for a variety of applications, including medical diagnostics, and the study of quantum entanglement and its potential to enable quantum computing and secure communication. Additionally, research is being conducted into the applications of quantum mechanics in materials science, such as unde...

Scientists Discover New “Hall Effect” That Could Revolutionize Electronics

Scientists discovered a new Hall effect driven by spin currents in noncollinear antiferromagnets, offering a path to more efficient and resilient spintronic devices . A research team led by Colorado State University graduate student Luke Wernert and Associate Professor Hua Chen has identified a previously unknown type of Hall effect that could lead to more energy-efficient electronic devices . Their study, published in Physical Review Letters, was conducted in collaboration with graduate student Bastián Pradenas and Professor Oleg Tchernyshyov of Johns Hopkins University. The researchers uncovered evidence of a new property, dubbed the “Hall mass,” in a class of complex magnetic materials known as noncollinear antiferromagnets . The traditional Hall effect, discovered by Edwin Hall at Johns Hopkins in 1879, describes how an electric current is deflected sideways when subjected to an external magnetic field, generating a measurable voltage. This effect plays a crucial role in technologi...