Skip to main content

Quantum Breakthrough: Scientists Find “Backdoor” to 60-Year-Old Superconducting Mystery




A Copenhagen team has unlocked a clever “backdoor” into studying rare quantum states once thought beyond reach.

Scientists at the Niels Bohr Institute, University of Copenhagen, have discovered a new approach for investigating rare quantum states that occur within superconducting vortices. These states were first proposed in the 1960s, but confirming their existence has proven extremely challenging because they occur at energy levels too small for most experiments to detect directly.

This breakthrough was achieved through a mix of creative problem-solving and the advanced development of custom-made materials in the Niels Bohr Institute’s laboratories. The research findings have been published in Physical Review Letters.

Synthetic superconducting vortices – finding a “backdoor.”

Instead of trying to observe the elusive states in their original setting, the researchers, led by a professor at the Niels Bohr Institute, Saulius Vaitiekėnas, built a completely new material system that mimics the conditions.

Like using a clever backdoor, they bypassed the original limitations by designing a tiny superconducting cylinder and applying magnetic flux to recreate the essential physics.

“ This setup allows us to study the same quantum states, but on our own terms,” says Saulius. “By designing the platform ourselves, we dictate the rules.”

Studying the elusive states is basic research – but where does it lead?

In a growing and very competitive research landscape in quantum, this work demonstrates the versatility of the semiconductor–superconductor platform to realize and study new types of quantum states.

And the semiconductor-superconductor platform in itself is actually also a Copenhagen innovation from about a decade ago.

“We actually came across these states serendipitously like many scientific discoveries. But once we understood what we were looking at, we realized it was more than a curiosity. It turns out that they could be useful for building hybrid quantum simulators, which are needed to study and understand complex future materials,” Saulius explains.

#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link :hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: supportteam@sciencefather.com

Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA
Tumblr : https://www.tumblr.com/blog/hepcs

Comments

Popular posts from this blog

Physicists observe a new form of magnetism for the first time

MIT physicists have demonstrated a new form of magnetism that could one day be harnessed to build faster, denser, and less power-hungry " spintronic " memory chips. The new magnetic state is a mash-up of two main forms of magnetism: the ferromagnetism of everyday fridge magnets and compass needles, and antiferromagnetism, in which materials have magnetic properties at the microscale yet are not macroscopically magnetized. Now, the MIT team has demonstrated a new form of magnetism , termed "p-wave magnetism." Physicists have long observed that electrons of atoms in regular ferromagnets share the same orientation of "spin," like so many tiny compasses pointing in the same direction. This spin alignment generates a magnetic field, which gives a ferromagnet its inherent magnetism. Electrons belonging to magnetic atoms in an antiferromagnet also have spin, although these spins alternate, with electrons orbiting neighboring atoms aligning their spins antiparalle...

new research in qauntum physics

         VISIT:https: //hep-conferences.sciencefather.com/          N ew research in  qauntum physics.                                                    Alphabet Has a Second, Secretive Quantum Computing Team Recent research in quantum physics includes the development of quantum computers, which are expected to be much more powerful than conventional computers and could revolutionize many aspects of technology, such as artificial intelligence and cryptography. Other research includes the development of quantum sensors for a variety of applications, including medical diagnostics, and the study of quantum entanglement and its potential to enable quantum computing and secure communication. Additionally, research is being conducted into the applications of quantum mechanics in materials science, such as unde...

Scientists Discover New “Hall Effect” That Could Revolutionize Electronics

Scientists discovered a new Hall effect driven by spin currents in noncollinear antiferromagnets, offering a path to more efficient and resilient spintronic devices . A research team led by Colorado State University graduate student Luke Wernert and Associate Professor Hua Chen has identified a previously unknown type of Hall effect that could lead to more energy-efficient electronic devices . Their study, published in Physical Review Letters, was conducted in collaboration with graduate student Bastián Pradenas and Professor Oleg Tchernyshyov of Johns Hopkins University. The researchers uncovered evidence of a new property, dubbed the “Hall mass,” in a class of complex magnetic materials known as noncollinear antiferromagnets . The traditional Hall effect, discovered by Edwin Hall at Johns Hopkins in 1879, describes how an electric current is deflected sideways when subjected to an external magnetic field, generating a measurable voltage. This effect plays a crucial role in technologi...