Skip to main content

This star survived a black hole and came back for more



Lightning might not strike twice, but black holes apparently do. An international group of researchers led by Tel Aviv University astronomers observed a flare caused when a star falls onto a black hole and is destroyed.

Surprisingly, this flare occurred about two years after a nearly identical flare named AT 2022dbl, from the exact same location. This is the first confirmed case of a star that survived an encounter with a supermassive black hole and came back for more. This discovery upends conventional wisdom about such tidal disruption events and suggests that these spectacular flares may be just the opening act in a longer, more complex story.

The researchers explain that at the center of every large galaxy lies a black hole that is millions to billions of times the mass of the sun. Such a supermassive black hole also exists in our own Milky Way, and its discovery was awarded the 2020 Nobel Prize in physics. But beyond knowing they're there, it's not well understood how such monsters form, nor how they affect their host galaxies.

One of the main challenges in understanding these black holes is that they are, well, black. A black hole is a region of space where gravity is so strong that not even light can escape. The supermassive black hole in the center of the Milky Way was discovered thanks to the movement of stars in its vicinity. But in other, more distant, galaxies, such movement cannot be discerned.

Luckily, or unluckily, depending on your point of view, once every 10,000 to 100,000 years, a star will wander too close to the supermassive black hole in the center of its galaxy, resulting in it getting ripped to shreds. Half of the star will be "swallowed" by the black hole, and half thrown outward. When material falls onto a black hole, it does so in a circular fashion, much like water going down the bathtub drain.

Around black holes, however, the velocity of the rotating material approaches the speed of light, the material is heated and radiates brilliantly. Such an unlucky star thus "illuminates" the black hole for a few weeks to months, providing astronomers with a brief opportunity to study its properties.

Strangely, though, these flares have not been behaving as expected. Their brilliance and temperature were much lower than predicted. After about a decade of trying to understand why, AT 2022dbl may have provided the answer.

The repetition of the first flare in an almost identical manner two years later implies that at least the first flare was the result of the partial disruption of the star, with much of it surviving and coming back for a (nearly identical) additional passage. These flares are thus more of a "snack" by the supermassive black hole than a "meal."

"The question now is whether we'll see a third flare after two more years, in early 2026" says Prof. Arcavi. "If we see a third flare," continues Arcavi, "it means that the second one was also the partial disruption of the star. So maybe all such flares, which we have been trying to understand for a decade now as full stellar disruptions, are not what we thought."

If a third flare does not occur, then the second flare could have been the full disruption of the star. The implication is that partial and full disruptions look almost identical, a prediction made before this discovery by the research group of Prof. Tsvi Piran at the Hebrew University.

"Either way," adds Arcavi, "we'll have to re-write our interpretation of these flares and what they can teach us about the monsters lying in the centers of galaxies."

#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link :hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: supportteam@sciencefather.com

Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA
Tumblr : https://www.tumblr.com/blog/hepcs

Comments

Popular posts from this blog

Physicists observe a new form of magnetism for the first time

MIT physicists have demonstrated a new form of magnetism that could one day be harnessed to build faster, denser, and less power-hungry " spintronic " memory chips. The new magnetic state is a mash-up of two main forms of magnetism: the ferromagnetism of everyday fridge magnets and compass needles, and antiferromagnetism, in which materials have magnetic properties at the microscale yet are not macroscopically magnetized. Now, the MIT team has demonstrated a new form of magnetism , termed "p-wave magnetism." Physicists have long observed that electrons of atoms in regular ferromagnets share the same orientation of "spin," like so many tiny compasses pointing in the same direction. This spin alignment generates a magnetic field, which gives a ferromagnet its inherent magnetism. Electrons belonging to magnetic atoms in an antiferromagnet also have spin, although these spins alternate, with electrons orbiting neighboring atoms aligning their spins antiparalle...

new research in qauntum physics

         VISIT:https: //hep-conferences.sciencefather.com/          N ew research in  qauntum physics.                                                    Alphabet Has a Second, Secretive Quantum Computing Team Recent research in quantum physics includes the development of quantum computers, which are expected to be much more powerful than conventional computers and could revolutionize many aspects of technology, such as artificial intelligence and cryptography. Other research includes the development of quantum sensors for a variety of applications, including medical diagnostics, and the study of quantum entanglement and its potential to enable quantum computing and secure communication. Additionally, research is being conducted into the applications of quantum mechanics in materials science, such as unde...

Freezing light? Italian scientists froze fastest thing in universe, here’s how

In a rare occurrence, physics made it possible to control the fastest travelling element - light. Italian scientists have managed to freeze the light, as per reports. A recent study published in a British weekly journal reportedly revealed that light can exhibit ‘ supersolid behavior ’ a unique state of matter that flows without friction while retaining a solid-like structure. The research, led by Antonio Gianfate from CNR Nanotec and Davide Nigro from the University of Pavia, marks a significant step in understanding supersolidity in light. The scientists described their findings as “just the beginning” of this exploration, as per reports. In what can be termed as ‘manipulating photons under controlled quantum conditions ’, the scientists demonstrated that light, too, can exhibit this behaviour. (A photon is a bundle of electromagnetic energy which is massless, and travel at the speed of light) How did scientists freeze light? As we know, freezing involves lowering a liquid’s tempera...