Skip to main content

Impossible signal from deep beneath Antarctic ice baffles physicists




The unusual radio pulses were detected by the Antarctic Impulsive Transient Antenna (ANITA) experiment, a range of instruments flown on balloons high above Antarctica that are designed to detect radio waves from cosmic rays hitting the atmosphere. Credit: Stephanie Wissel / Penn State

A cosmic particle detector in Antarctica has emitted a series of bizarre signals that defy the current understanding of particle physics, according to an international research group that includes scientists from Penn State. The unusual radio pulses were detected by the Antarctic Impulsive Transient Antenna (ANITA) experiment, a range of instruments flown on balloons high above Antarctica that are designed to detect radio waves from cosmic rays hitting the atmosphere.

The goal of the experiment is to gain insight into distant cosmic events by analyzing signals that reach the Earth. Rather than reflecting off the ice, the signals a form of radio waves appeared to be coming from below the horizon, an orientation that cannot be explained by the current understanding of particle physics and may hint at new types of particles or interactions previously unknown to science, the team said.

"The radio waves that we detected were at really steep angles, like 30 degrees below the surface of the ice," said Stephanie Wissel, associate professor of physics, astronomy and astrophysics who worked on the ANITA team searching for signals from elusive particles called neutrinos.

She explained that by their calculations, the anomalous signal had to pass through and interact with thousands of kilometers of rock before reaching the detector, which should have left the radio signal undetectable because it would have been absorbed into the rock.

"It's an interesting problem because we still don't actually have an explanation for what those anomalies are, but what we do know is that they're most likely not representing neutrinos," Wissel said.

Neutrinos, a type of particle with no charge and the smallest mass of all subatomic particles, are abundant in the universe. Usually emitted by high-energy sources like the sun or major cosmic events like supernovas or even the Big Bang, there are neutrino signals everywhere. The problem with these particles, though, is that they are notoriously difficult to detect, Wissel explained.

"You have a billion neutrinos passing through your thumbnail at any moment, but neutrinos don't really interact," she said. "So, this is the double-edged sword problem. If we detect them, it means they have traveled all this way without interacting with anything else. We could be detecting a neutrino coming from the edge of the observable universe."

Once detected and traced to their source, these particles can reveal more about cosmic events than even the most high-powered telescopes, Wissel added, as the particles can travel undisturbed and almost as fast as the speed of light, giving clues about cosmic events that happened lightyears away.

Wissel and teams of researchers around the world have been working to design and build special detectors to capture sensitive neutrino signals, even in relatively small amounts. Even one small signal from a neutrino holds a treasure trove of information, so all data has significance, she said.

"We use radio detectors to try to build really, really large neutrino telescopes so that we can go after a pretty low expected event rate," said Wissel, who has designed experiments to spot neutrinos in Antarctica and South America.

ANITA is one of these detectors, and it was placed in Antarctica because there is little chance of interference from other signals. To capture the emission signals, the balloon-borne radio detector is sent to fly over stretches of ice, capturing what are called ice showers.

"We have these radio antennas on a balloon that flies 40 kilometers above the ice in Antarctica," Wissel said. "We point our antennas down at the ice and look for neutrinos that interact in the ice, producing radio emissions that we can then sense on our detectors."

These special ice-interacting neutrinos, called tau neutrinos, produce a secondary particle called a tau lepton that is released out of the ice and decays, the physics term referring to how the particle loses energy as it travels over space and breaks down into its constituents. This produces emissions known as air showers.

If they were visible to the naked eye, air showers might look like a sparkler waved in one direction, with sparks trailing it, Wissel explained. The researchers can distinguish between the two signals ice and air showers to determine attributes about the particle that created the signal.

These signals can then be traced back to their origin, similar to how a ball thrown at an angle will predictably bounce back at the same angle, Wissel said. The recent anomalous findings, though, cannot be traced back in such a manner as the angle is much sharper than existing models predict.

By analyzing data collected from multiple ANITA flights and comparing it with mathematical models and extensive simulations of both regular cosmic rays and upward-going air showers, the researchers were able to filter out background noise and eliminate the possibility of other known particle-based signals.

The researchers then cross-referenced signals from other independent detectors like the IceCube Experiment and the Pierre Auger Observatory to see if data from upward-going air showers, similar to those found by ANITA, were captured by other experiments.

Analysis revealed the other detectors did not register anything that could have explained what ANITA detected, which led the researchers to describe the signal as "anomalous," meaning that the particles causing the signal are not neutrinos, Wissel explained. The signals do not fit within the standard picture of particle physics, and while several theories suggest that it may be a hint of dark matter, the lack of follow-up observations with IceCube and Auger really narrow the possibilities, she said.

Penn State has built detectors and analyzed neutrino signals for close to 10 years, Wissel explained, and added that her team is currently designing and building the next big detector. The new detector, called PUEO, will be larger and better at detecting neutrino signals, Wissel said, and it will hopefully shed light on what exactly the anomalous signal is.

"My guess is that some interesting radio propagation effect occurs near ice and also near the horizon that I don't fully understand, but we certainly explored several of those, and we haven't been able to find any of those yet either," Wissel said. "So, right now, it's one of these long-standing mysteries, and I'm excited that when we fly PUEO, we'll have better sensitivity. In principle, we should pick up more anomalies, and maybe we'll actually understand what they are. We also might detect neutrinos, which would in some ways be a lot more exciting."

The other Penn State co-author is Andrew Zeolla, a doctoral candidate in physics. The research conducted by scientists from Penn State was funded by the U.S. Department of Energy and the U.S. National Science Foundation. The paper contains the full list of collaborators and authors.

Website: International Research Awards on High Energy Physics and Computational Science.


#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link :hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: physicsqueries@sciencefather.com

Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA
Tumblr : https://www.tumblr.com/blog/hepcs

Comments

Popular posts from this blog

"Explore the Fourth Dimension"

Fourth Dimension   The fourth dimension is a fascinating concept that has captured the imaginations of scientists, mathematicians, and artists for centuries. Unlike our three-dimensional world, which is limited by the linear flow of time, the fourth dimension is a realm of space and time that exists beyond our everyday experience. One way to visualize the fourth dimension is through the use of a hypercube, also known as a tesseract. A hypercube is a cube within a cube, with additional lines and edges connecting the vertices of the two cubes. It's impossible to construct in our three-dimensional world, but it provides a glimpse into what the fourth dimension might look like. Another way to understand the fourth dimension is through the concept of a wormhole, a theoretical passage through space-time that connects two distant points in the universe. A wormhole is like a shortcut through the fabric of space-time, allowing us to travel vast distances in an instant. While there is no de...

Physicists observe a new form of magnetism for the first time

MIT physicists have demonstrated a new form of magnetism that could one day be harnessed to build faster, denser, and less power-hungry " spintronic " memory chips. The new magnetic state is a mash-up of two main forms of magnetism: the ferromagnetism of everyday fridge magnets and compass needles, and antiferromagnetism, in which materials have magnetic properties at the microscale yet are not macroscopically magnetized. Now, the MIT team has demonstrated a new form of magnetism , termed "p-wave magnetism." Physicists have long observed that electrons of atoms in regular ferromagnets share the same orientation of "spin," like so many tiny compasses pointing in the same direction. This spin alignment generates a magnetic field, which gives a ferromagnet its inherent magnetism. Electrons belonging to magnetic atoms in an antiferromagnet also have spin, although these spins alternate, with electrons orbiting neighboring atoms aligning their spins antiparalle...

Green comet to pass Earth, won't be back for another 50,000 years

   visit:  https://hep-conferences.sciencefather.com/ After travelling from the icy reaches of our Solar System it will come closest to the Sun on January 12 and pass nearest to Earth on February 1.   A newly discovered comet could be visible to the naked eye as it shoots past Earth and the Sun in the coming weeks for the first time in 50,000 years, astronomers have said. The comet is called C/2022 E3 (ZTF) after the Zwicky Transient Facility, which first spotted it passing Jupiter in March last year. After travelling from the icy reaches of our Solar System it will come closest to the Sun on January 12 and pass nearest to Earth on February 1. It will be easy to spot with a good pair of binoculars and likely even with the naked eye, provided the sky is not too illuminated by city lights or the Moon. The comet "will be brightest when it is closest to the Earth", Thomas Prince, a physics professor at the California Institute of Technology who works at the Zwicky Transi...