Skip to main content

Discovery of 'mini halo' points to how the early universe was formed




Astronomers have uncovered a vast cloud of energetic particles a "mini halo" surrounding one of the most distant galaxy clusters ever observed, marking a major step forward in understanding the hidden forces that shape the cosmos.

The mini-halo is at a distance so great that it takes light 10 billion years to reach Earth, making it the most distant ever found, doubling the previous distance known to science.

The discovery demonstrates that entire galaxy clusters, among the largest structures in the universe, have been immersed in high-energy particles for most of their existence.

Such a mini-halo consists of highly energetic, charged particles in the vacuum between galaxies in a cluster, which together emanate radio waves which can be detected from Earth.

The researchers analyzed data from the Low Frequency Array (LOFAR) radio telescope, a vast network of over 100,000 small antennas spanning eight European countries.

While studying a galaxy cluster named SpARCS1049, the researchers detected a faint, widespread radio signal. They found that it did not emanate from individual galaxies, but from a vast region of space filled with high-energy particles and magnetic fields.

Stretching over a million light-years, this diffuse glow is a telltale sign of a mini-halo, a structure astronomers have only been able to observe in the nearby universe up until now.

"It's as if we've discovered a vast cosmic ocean, where entire galaxy clusters are constantly immersed in high-energy particles," said Hlavacek-Larrondo.

Timmerman added, "It's astonishing to find such a strong radio signal at this distance. It means these energetic particles and the processes creating them have been shaping galaxy clusters for nearly the entire history of the universe."

Two likely explanations

There are two likely explanations behind the formation of the mini-halo. One is that there are supermassive black holes at the hearts of galaxies within a cluster that can eject streams of high-energy particles into space. However, astronomers are still trying to understand how these particles would be able to migrate away from the black hole to create such a gigantic cloud of particles, while maintaining so much of their energy.

The second explanation is cosmic particle collisions. This is when charged particles within the hot plasma of the galaxy cluster collide at near-light speeds, smashing apart into the highly energetic particles that can be observed from Earth.

This new discovery provides a rare look at what galaxy clusters were like just after they formed, the astronomers say. It not only shows that galaxy clusters have been infused with these high-energy particles for billions of years more than previously known, but it also allows astronomers to study where these high-energy particles come from.

It suggests that black holes and/or high-energy particle collisions have been enriching the environment of galaxy clusters much earlier than expected, keeping them energized over billions of years.

With newer telescopes being developed, such as the Square Kilometer Array (SKA), scientists will be able to detect even fainter signals and further explore the role of magnetic fields, cosmic rays, and energetic processes in shaping the universe, the astronomers say.

"We are just scratching the surface of how energetic the early universe really was," said Hlavacek-Larrondo. "This discovery gives us a new window into how galaxy clusters grow and evolve, driven by both black holes and high-energy particle physics."

Website: International Research Awards on High Energy Physics and Computational Science.


#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link :hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: physicsqueries@sciencefather.com

Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA
Tumblr : https://www.tumblr.com/blog/hepcs

Comments

Popular posts from this blog

"Explore the Fourth Dimension"

Fourth Dimension   The fourth dimension is a fascinating concept that has captured the imaginations of scientists, mathematicians, and artists for centuries. Unlike our three-dimensional world, which is limited by the linear flow of time, the fourth dimension is a realm of space and time that exists beyond our everyday experience. One way to visualize the fourth dimension is through the use of a hypercube, also known as a tesseract. A hypercube is a cube within a cube, with additional lines and edges connecting the vertices of the two cubes. It's impossible to construct in our three-dimensional world, but it provides a glimpse into what the fourth dimension might look like. Another way to understand the fourth dimension is through the concept of a wormhole, a theoretical passage through space-time that connects two distant points in the universe. A wormhole is like a shortcut through the fabric of space-time, allowing us to travel vast distances in an instant. While there is no de...

Physicists observe a new form of magnetism for the first time

MIT physicists have demonstrated a new form of magnetism that could one day be harnessed to build faster, denser, and less power-hungry " spintronic " memory chips. The new magnetic state is a mash-up of two main forms of magnetism: the ferromagnetism of everyday fridge magnets and compass needles, and antiferromagnetism, in which materials have magnetic properties at the microscale yet are not macroscopically magnetized. Now, the MIT team has demonstrated a new form of magnetism , termed "p-wave magnetism." Physicists have long observed that electrons of atoms in regular ferromagnets share the same orientation of "spin," like so many tiny compasses pointing in the same direction. This spin alignment generates a magnetic field, which gives a ferromagnet its inherent magnetism. Electrons belonging to magnetic atoms in an antiferromagnet also have spin, although these spins alternate, with electrons orbiting neighboring atoms aligning their spins antiparalle...

Green comet to pass Earth, won't be back for another 50,000 years

   visit:  https://hep-conferences.sciencefather.com/ After travelling from the icy reaches of our Solar System it will come closest to the Sun on January 12 and pass nearest to Earth on February 1.   A newly discovered comet could be visible to the naked eye as it shoots past Earth and the Sun in the coming weeks for the first time in 50,000 years, astronomers have said. The comet is called C/2022 E3 (ZTF) after the Zwicky Transient Facility, which first spotted it passing Jupiter in March last year. After travelling from the icy reaches of our Solar System it will come closest to the Sun on January 12 and pass nearest to Earth on February 1. It will be easy to spot with a good pair of binoculars and likely even with the naked eye, provided the sky is not too illuminated by city lights or the Moon. The comet "will be brightest when it is closest to the Earth", Thomas Prince, a physics professor at the California Institute of Technology who works at the Zwicky Transi...