Skip to main content

Evidence for a superconducting gap emerges in hydrogen sulphides



Researchers in Germany report that they have directly measured a superconducting gap in a hydride sulphide material for the first time. The new finding represents “smoking gun” evidence for superconductivity in these materials, while also confirming that the electron pairing that causes it is mediated by phonons.

Superconductors are materials that conduct electricity without resistance. Many materials behave this way when cooled below a certain transition temperature Tc, but in most cases this temperature is very low. For example, solid mercury, the first superconductor to be discovered, has a Tc of 4.2 K. Superconductors that operate at higher temperatures – perhaps even at room temperature – are thus highly desirable, as an ambient-temperature superconductor would dramatically increase the efficiency of electrical generators and transmission lines.

The rise of the superhydrides

The 1980s and 1990s saw considerable progress towards this goal thanks to the discovery of high-temperature copper oxide superconductors, which have Tcs between 30–133 K. Then, in 2015, the maximum known critical temperature rose even higher thanks to the discovery that a sulphide material, H3S, has a Tc of 203 K when compressed to pressures of 150 GPa.This result sparked a flurry of interest in solid materials containing hydrogen atoms bonded to other elements. In 2019, the record was broken again, this time by lanthanum decahydride (LaH10), which was found to have a Tc of 250–260 K, again at very high pressures.

A further advance occurred in 2021 with the discovery of high-temperature superconductivity in cerium hydrides. These novel phases of CeH9 and another newly-synthesized material, CeH10, are remarkable in that they are stable and display high-temperature superconductivity at lower pressures (about 80 GPa, or 0.8 million atmospheres) than the other so-called “superhydrides

But how does it work?

One question left unanswered amid these advances concerned the mechanism for superhydride superconductivity. According to the Bardeen–Cooper–Schrieffer (BCS) theory of “conventional” superconductivity, superconductivity occurs when electrons overcome their mutual electrical repulsion to form pairs. These electron pairs, which are known as Cooper pairs, can then travel unhindered through the material as a supercurrent without scattering off phonons (quasiparticles arising from vibrations of the material’s crystal lattice) or other impurities.

Cooper pairing is characterized by a tell-tale energy gap near what’s known as the Fermi level, which is the highest energy level that electrons can occupy in a solid at a temperature of absolute zero. This gap is equivalent to the maximum energy required to break up a Cooper pair of electrons, and spotting it is regarded as unambiguous proof of that material’s superconducting nature.

For the superhydrides, however, this is easier said than done, because measuring such a gap requires instruments that can withstand the extremely high pressures required for superhydrides to exist and behave as superconductors. Traditional techniques such as scanning tunnelling spectroscopy or angle-resolved photoemission spectroscopy do not work, and there was little consensus on what might take their place.

Website: International Research Awards on High Energy Physics and Computational Science.



#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link :hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: physicsqueries@sciencefather.com

Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA
Tumblr : www.tumblr.com/blog/victoriaanisa







Comments

Popular posts from this blog

Physicists observe a new form of magnetism for the first time

MIT physicists have demonstrated a new form of magnetism that could one day be harnessed to build faster, denser, and less power-hungry " spintronic " memory chips. The new magnetic state is a mash-up of two main forms of magnetism: the ferromagnetism of everyday fridge magnets and compass needles, and antiferromagnetism, in which materials have magnetic properties at the microscale yet are not macroscopically magnetized. Now, the MIT team has demonstrated a new form of magnetism , termed "p-wave magnetism." Physicists have long observed that electrons of atoms in regular ferromagnets share the same orientation of "spin," like so many tiny compasses pointing in the same direction. This spin alignment generates a magnetic field, which gives a ferromagnet its inherent magnetism. Electrons belonging to magnetic atoms in an antiferromagnet also have spin, although these spins alternate, with electrons orbiting neighboring atoms aligning their spins antiparalle...

Green comet to pass Earth, won't be back for another 50,000 years

   visit:  https://hep-conferences.sciencefather.com/ After travelling from the icy reaches of our Solar System it will come closest to the Sun on January 12 and pass nearest to Earth on February 1.   A newly discovered comet could be visible to the naked eye as it shoots past Earth and the Sun in the coming weeks for the first time in 50,000 years, astronomers have said. The comet is called C/2022 E3 (ZTF) after the Zwicky Transient Facility, which first spotted it passing Jupiter in March last year. After travelling from the icy reaches of our Solar System it will come closest to the Sun on January 12 and pass nearest to Earth on February 1. It will be easy to spot with a good pair of binoculars and likely even with the naked eye, provided the sky is not too illuminated by city lights or the Moon. The comet "will be brightest when it is closest to the Earth", Thomas Prince, a physics professor at the California Institute of Technology who works at the Zwicky Transi...

"Explore the Fourth Dimension"

Fourth Dimension   The fourth dimension is a fascinating concept that has captured the imaginations of scientists, mathematicians, and artists for centuries. Unlike our three-dimensional world, which is limited by the linear flow of time, the fourth dimension is a realm of space and time that exists beyond our everyday experience. One way to visualize the fourth dimension is through the use of a hypercube, also known as a tesseract. A hypercube is a cube within a cube, with additional lines and edges connecting the vertices of the two cubes. It's impossible to construct in our three-dimensional world, but it provides a glimpse into what the fourth dimension might look like. Another way to understand the fourth dimension is through the concept of a wormhole, a theoretical passage through space-time that connects two distant points in the universe. A wormhole is like a shortcut through the fabric of space-time, allowing us to travel vast distances in an instant. While there is no de...