Skip to main content

Bubbles That Defy Physics: Scientists Uncover a Mind-Blowing New Phenomenon




Shaken bubbles move sideways in a surprising galloping motion, opening new possibilities for technology and science.

A team led by researchers at UNC-Chapel Hill has made an extraordinary discovery that is reshaping our understanding of bubbles and their movement. Imagine tiny air bubbles inside a liquid-filled container. When the container is shaken up and down, these bubbles exhibit an unexpected, rhythmic “galloping” motion bouncing like playful horses and moving horizontally, despite the vertical shaking. This counterintuitive phenomenon, revealed in a new study, has significant technological implications, from improving surface cleaning and heat transfer in microchips to advancing space applications.

These galloping bubbles are already drawing significant attention. Their impact on fluid dynamics was recently recognized with an award for their video entry at the latest Gallery of Fluid Motion, organized by the American Physical Society.

“Our research not only answers a fundamental scientific question but also inspires curiosity and exploration of the fascinating, unseen world of fluid motion,” said Pedro Sáenz, principal investigator and professor of applied mathematics at UNC-Chapel Hill. “After all, the smallest things can sometimes lead to the biggest changes.”

Future Innovations and Real-World Applications

Bubbles play a key role in a vast range of everyday processes, from the fizz in soft drinks to climate regulation and industrial applications such as cooling systems, water treatment, and chemical production.

Controlling bubble movement has long been a challenge across multiple fields, but this study introduces an entirely new method: leveraging a fluid instability to direct bubbles in precise ways.

One immediate application is in cooling systems for microchips. On Earth, buoyancy naturally removes bubbles from heated surfaces, preventing overheating. However, in microgravity environments such as space, there is no buoyancy, making bubble removal a major issue. This newly discovered method allows bubbles to be actively removed without relying on gravity, which can enable improved heat transfer in satellites and space-based electronics.

Another breakthrough is in surface cleaning. Proof-of-concept experiments show that ‘galloping bubbles’ can clean dusty surfaces by bouncing and zigzagging across them, like a tiny Roomba. The ability to manipulate bubble motion in this way could lead to innovations in industrial cleaning and biomedical applications such as targeted drug delivery.

“The newly discovered self-propulsion mechanism allows bubbles to travel distances and gives them an unprecedented capacity to navigate intricate fluid networks,” said Saiful Tamim, joint first author and postdoctoral research assistant at UNC-Chapel Hill. “This could offer solutions to long-standing challenges in heat transfer, surface cleaning, and even inspire new soft robotic systems.”

A Leap Forward in Bubble Research

Bubbles have fascinated scientists for centuries. Leonardo da Vinci was among the first to document their erratic paths, describing how they spiral unpredictably rather than rising straight up. Until now, controlling bubble motion has remained a challenge, with available approaches being few and lacking versatility. This new research changes that perspective, demonstrating that bubbles can be guided along predictable paths using carefully tuned vibrations.

“It’s fascinating to see something as simple as a bubble reveal such complex and surprising behavior,” said Jian Hui Guan, joint first author and postdoctoral research assistant at UNC-Chapel Hill. “By harnessing a new method to move bubbles, we’ve unlocked possibilities for innovation in fields ranging from microfluidics to heat transfer.”

The discovery of galloping bubbles represents a significant leap forward in our understanding of bubble dynamics, with implications stretching across industries. As researchers continue to explore and refine this phenomenon, the world may soon see new technologies that harness the power of these tiny, acrobatic bubbles.

Website: International Conference on High Energy Physics and Computational Science.


#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link :hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: physicsqueries@sciencefather.com

Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA
Tumblr : www.tumblr.com/blog/victoriaanisa

Comments

Popular posts from this blog

Physicists observe a new form of magnetism for the first time

MIT physicists have demonstrated a new form of magnetism that could one day be harnessed to build faster, denser, and less power-hungry " spintronic " memory chips. The new magnetic state is a mash-up of two main forms of magnetism: the ferromagnetism of everyday fridge magnets and compass needles, and antiferromagnetism, in which materials have magnetic properties at the microscale yet are not macroscopically magnetized. Now, the MIT team has demonstrated a new form of magnetism , termed "p-wave magnetism." Physicists have long observed that electrons of atoms in regular ferromagnets share the same orientation of "spin," like so many tiny compasses pointing in the same direction. This spin alignment generates a magnetic field, which gives a ferromagnet its inherent magnetism. Electrons belonging to magnetic atoms in an antiferromagnet also have spin, although these spins alternate, with electrons orbiting neighboring atoms aligning their spins antiparalle...

Green comet to pass Earth, won't be back for another 50,000 years

   visit:  https://hep-conferences.sciencefather.com/ After travelling from the icy reaches of our Solar System it will come closest to the Sun on January 12 and pass nearest to Earth on February 1.   A newly discovered comet could be visible to the naked eye as it shoots past Earth and the Sun in the coming weeks for the first time in 50,000 years, astronomers have said. The comet is called C/2022 E3 (ZTF) after the Zwicky Transient Facility, which first spotted it passing Jupiter in March last year. After travelling from the icy reaches of our Solar System it will come closest to the Sun on January 12 and pass nearest to Earth on February 1. It will be easy to spot with a good pair of binoculars and likely even with the naked eye, provided the sky is not too illuminated by city lights or the Moon. The comet "will be brightest when it is closest to the Earth", Thomas Prince, a physics professor at the California Institute of Technology who works at the Zwicky Transi...

"Explore the Fourth Dimension"

Fourth Dimension   The fourth dimension is a fascinating concept that has captured the imaginations of scientists, mathematicians, and artists for centuries. Unlike our three-dimensional world, which is limited by the linear flow of time, the fourth dimension is a realm of space and time that exists beyond our everyday experience. One way to visualize the fourth dimension is through the use of a hypercube, also known as a tesseract. A hypercube is a cube within a cube, with additional lines and edges connecting the vertices of the two cubes. It's impossible to construct in our three-dimensional world, but it provides a glimpse into what the fourth dimension might look like. Another way to understand the fourth dimension is through the concept of a wormhole, a theoretical passage through space-time that connects two distant points in the universe. A wormhole is like a shortcut through the fabric of space-time, allowing us to travel vast distances in an instant. While there is no de...