Skip to main content

Inside the Tokamak: Scientists Crack the Code to Stable Fusion Energy



Researchers are closing in on the potential of nuclear fusion, the process that powers the stars, as a clean and inexhaustible energy source.

At the heart of this effort is the tokamak reactor design, which uses magnetic fields to confine plasma and maintain the necessary conditions for fusion. A critical challenge has been managing the plasma edge instabilities, but recent breakthroughs in understanding how energetic particles interact with these instabilities suggest promising methods for improving reactor performance.

Sustainable Energy and Nuclear Fusion

Developing sustainable energy sources capable of meeting global energy demand is one of today’s most pressing scientific challenges. Among the potential solutions, nuclear fusion  the process that powers the stars stands out as a clean, virtually limitless energy source.

The most promising approach to fusion energy is the tokamak reactor, which uses magnetic fields to confine plasma. High plasma confinement is critical for the success of nuclear fusion power plants and is the ultimate goal of ITER, the world’s largest tokamak, currently being constructed in Cadarache, France. A key factor in achieving this is maintaining plasma edge stability, which plays a vital role in effective confinement.

In current tokamaks, edge instabilities, known as Edge Localized Modes (ELMs), cause significant particle and energy losses, much like solar flares erupting at the Sun’s surface. These losses can lead to erosion and extreme heat fluxes on the reactor’s plasma-facing components conditions that would be unsustainable for future fusion power plants.

Role of Energetic Particles in Fusion Reactors

Energetic (suprathermal) particles constitute an essential source of momentum and energy, especially in future burning plasmas. They must be well confined to guarantee a self-sustaining fusion reaction. An international collaboration has studied the impact of energetic ions on these ELMs. They have combined experiments, modeling, and simulations to understand the behavior of ELMs in the presence of energetic particles. The measurements were obtained by the team at the ASDEX Upgrade tokamak, a fusion device located at the Max Planck Institute for Plasma Physics (Garching, Germany). The simulations were done using a hybrid code named MEGA, which calculates the self-consistent interaction between the ELMs and energetic particles. Comparison of the modeling results to the experimental data provides a new physics understanding of ELMs in the presence of energetic particles. The results indicate that the spatio-temporal structure of ELMs is largely affected by the energetic particle population and indicate that the interaction mechanism between ELMs and energetic particles is a resonant energy exchange between them.

New Insights from Fusion Research

This interaction mechanism helps to qualitatively understand the striking similarities between the experimental signatures of ELMs visible in magnetic diagnostics and in fast-ion loss detectors. This experimental and computational work, which has been done within the framework of the European fusion consortium EUROfusion, has recently been published in Nature Physics.

“In our publication, we demonstrate that energetic ion kinetic effects can alter the spatio-temporal structure of the edge localized modes. The effect is analogous to a surfer riding the wave. The surfer leaves footprints on the wave when riding it. In a plasma, the energetic particle interacts with the MHD wave (the ELM) and can change its spatio-temporal pattern. Our results can have important implications for the optimization of ELM control techniques. For instance, we could use energetic particles as active actuator in the control of these MHD waves “, says main author Jesús José Domínguez-Palacios Durán.

This is a groundbreaking work, that provides, for the first time, a detailed understanding of the interaction between energetic ions and ELMs. The results indicate that, for ITER, a strong energy and momentum exchange between ELMs and energetic ions is expected.

Website: International Conference on High Energy Physics and Computational Science.

#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link :hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: physicsqueries@sciencefather.com

Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA

Comments

Popular posts from this blog

Physicists observe a new form of magnetism for the first time

MIT physicists have demonstrated a new form of magnetism that could one day be harnessed to build faster, denser, and less power-hungry " spintronic " memory chips. The new magnetic state is a mash-up of two main forms of magnetism: the ferromagnetism of everyday fridge magnets and compass needles, and antiferromagnetism, in which materials have magnetic properties at the microscale yet are not macroscopically magnetized. Now, the MIT team has demonstrated a new form of magnetism , termed "p-wave magnetism." Physicists have long observed that electrons of atoms in regular ferromagnets share the same orientation of "spin," like so many tiny compasses pointing in the same direction. This spin alignment generates a magnetic field, which gives a ferromagnet its inherent magnetism. Electrons belonging to magnetic atoms in an antiferromagnet also have spin, although these spins alternate, with electrons orbiting neighboring atoms aligning their spins antiparalle...

new research in qauntum physics

         VISIT:https: //hep-conferences.sciencefather.com/          N ew research in  qauntum physics.                                                    Alphabet Has a Second, Secretive Quantum Computing Team Recent research in quantum physics includes the development of quantum computers, which are expected to be much more powerful than conventional computers and could revolutionize many aspects of technology, such as artificial intelligence and cryptography. Other research includes the development of quantum sensors for a variety of applications, including medical diagnostics, and the study of quantum entanglement and its potential to enable quantum computing and secure communication. Additionally, research is being conducted into the applications of quantum mechanics in materials science, such as unde...

Freezing light? Italian scientists froze fastest thing in universe, here’s how

In a rare occurrence, physics made it possible to control the fastest travelling element - light. Italian scientists have managed to freeze the light, as per reports. A recent study published in a British weekly journal reportedly revealed that light can exhibit ‘ supersolid behavior ’ a unique state of matter that flows without friction while retaining a solid-like structure. The research, led by Antonio Gianfate from CNR Nanotec and Davide Nigro from the University of Pavia, marks a significant step in understanding supersolidity in light. The scientists described their findings as “just the beginning” of this exploration, as per reports. In what can be termed as ‘manipulating photons under controlled quantum conditions ’, the scientists demonstrated that light, too, can exhibit this behaviour. (A photon is a bundle of electromagnetic energy which is massless, and travel at the speed of light) How did scientists freeze light? As we know, freezing involves lowering a liquid’s tempera...