Skip to main content

Molecular “Fingerprinting” Now 100 Times Faster With Raman Spectroscopy




Researchers at the University of Tokyo have achieved a 100-fold increase in the measurement rate of Raman spectroscopy, advancing its application in biomedical diagnostics and materials analytics.

This innovation was enabled by combining coherent Raman spectroscopy, a specially designed ultrashort pulse laser, and time-stretch technology, offering new possibilities for high-throughput, label-free chemical imaging.

Breakthrough in Raman Spectroscopy Speed

Scientists have successfully increased the measurement rate of Raman spectroscopy, a widely used technique for identifying molecules, by 100 times. Researchers Takuma Nakamura, Kazuki Hashimoto, and Takuro Ideguchi from the Institute for Photon Science and Technology at the University of Tokyo achieved this breakthrough. Raman spectroscopy is commonly used to measure the “vibrational fingerprint” of molecules, which helps to identify them.

This significant improvement addresses a long-standing limitation in the technique’s speed, opening doors to advancements in fields that depend on rapid molecular and cellular identification, such as biomedical diagnostics and material analysis. The research was published on October 22 in the journal Ultrafast Science.




Expanding Applications in Science

Raman spectroscopy plays a crucial role in both basic and applied sciences by identifying various types of molecules and cells. When a laser beam interacts with molecules, it causes vibrations and rotations in the molecular bonds, resulting in a shift in the light’s frequency. This shift, known as the scattering spectra, forms the unique “vibrational fingerprint” of each molecule.

Measurement is the foundation of science,” says Ideguchi, the principal investigator of the study, “and as such, we strive to achieve the highest performance in our measurement systems. Particularly, we are dedicated to pushing the boundaries of optical measurements.”

Enhancing Optical Measurements

As Raman spectroscopy is a widely used measurement technique, there have been many attempts to improve it. One of its major limiting factors is its measurement rate, making it unable to “keep up” with the speed of changes in some chemical and physical reactions. The team set to improve the measurement rate by building a system from scratch.

“I had been contemplating this idea for over ten years without being able to start the project,” says Ideguchi. “It was the new, optimal laser system we developed a few years ago that finally made progress possible.”

Technological Innovation and Future Visions

Leveraging their expertise in optics and photonics, the researchers combined three ingredients: coherent Raman spectroscopy, a version of Raman spectroscopy that produces stronger signals than conventional, spontaneous Raman spectroscopy, a specifically designed ultrashort pulse laser, and time-stretch technology using optical fibers. As a result, they achieved a 50MSpectra/s (megaspectra per second) measurement rate, a 100-fold increase compared to the fastest measurement of 50kSpectra/s (kilospectra per second) so far. Ideguchi describes the wide-ranging potential of this improvement.

“We aim to apply our spectrometer to microscopy, enabling the capture of 2D or 3D images with Raman scattering spectra. Additionally, we envision its use in flow cytometry by combining this technology with microfluidics. These systems will enable high-throughput, label-free chemical imaging and spectroscopy of biomolecules in cells or tissues.”

Website: International Research Awards on High Energy Physics and Computational Science.

#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics
#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience
#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing
#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link : https://hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
Contact us : contact@sciencefather.com


Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA

Comments

Popular posts from this blog

"Explore the Fourth Dimension"

Fourth Dimension   The fourth dimension is a fascinating concept that has captured the imaginations of scientists, mathematicians, and artists for centuries. Unlike our three-dimensional world, which is limited by the linear flow of time, the fourth dimension is a realm of space and time that exists beyond our everyday experience. One way to visualize the fourth dimension is through the use of a hypercube, also known as a tesseract. A hypercube is a cube within a cube, with additional lines and edges connecting the vertices of the two cubes. It's impossible to construct in our three-dimensional world, but it provides a glimpse into what the fourth dimension might look like. Another way to understand the fourth dimension is through the concept of a wormhole, a theoretical passage through space-time that connects two distant points in the universe. A wormhole is like a shortcut through the fabric of space-time, allowing us to travel vast distances in an instant. While there is no de...

Quantum Tunneling Breakthrough: Technion Scientists Move Atoms With Precision

In a groundbreaking experiment at the Technion Faculty of Physics , researchers demonstrated the transfer of atoms via quantum tunneling using optical tweezers. This novel method, which strategically avoids trapping atoms in the middle tweezer, represents a notable stride toward innovative quantum technologies. Quantum Tunneling in Optical Tweezers A new experiment at the Technion Faculty of Physics demonstrates how atoms can be transferred between locations using quantum tunneling with optical tweezers. Led by Prof. Yoav Sagi and doctoral student Yanay Florshaim from the Solid State Institute, this research was published recently in Science Advances. The experiment relies on optical tweezers , a powerful tool that uses focused laser beams to trap and manipulate tiny particles like atoms, molecules, and even living cells. Here’s how it works: when light interacts with matter, it creates a force proportional to the light’s intensity. This force, though too weak to impact larger objects,...

Physicists observe a new form of magnetism for the first time

MIT physicists have demonstrated a new form of magnetism that could one day be harnessed to build faster, denser, and less power-hungry " spintronic " memory chips. The new magnetic state is a mash-up of two main forms of magnetism: the ferromagnetism of everyday fridge magnets and compass needles, and antiferromagnetism, in which materials have magnetic properties at the microscale yet are not macroscopically magnetized. Now, the MIT team has demonstrated a new form of magnetism , termed "p-wave magnetism." Physicists have long observed that electrons of atoms in regular ferromagnets share the same orientation of "spin," like so many tiny compasses pointing in the same direction. This spin alignment generates a magnetic field, which gives a ferromagnet its inherent magnetism. Electrons belonging to magnetic atoms in an antiferromagnet also have spin, although these spins alternate, with electrons orbiting neighboring atoms aligning their spins antiparalle...