Thursday, October 17, 2024

Machine Learning in Physics #sciencefather #science #High energy physics...

Inside the underground lab in China tasked with solving a physics mystery






A giant sphere 700 meters underground with thousands of light-detecting tubes will be sealed in a 12-story cylindrical pool of water in coming months for an experiment that will shine new light on elusive subatomic particles known as neutrinos.

After years of construction, the $300 million Jiangmen Underground Neutrino Observatory (JUNO) in China's southern Guangdong province will soon start gathering data on neutrinos, a product of nuclear reactions, to help solve one of the biggest mysteries in particle physics.

Every second, trillions of extremely small neutrinos pass through matter, including the human body. In mid-flight, a neutrino, of which there are three known varieties, could transform into other types. Determining which types are the lightest and the heaviest would offer clues to subatomic processes during the early days of the universe and to explaining why matter is the way it is.

To that end, Chinese physicists and collaborating scientists from all over the world will analyse the data on neutrinos emitted by two nearby Guangdong nuclear power plants for up to six years.

JUNO would also be able to observe neutrinos from the sun, gaining a real-time view of solar processes. It could also study neutrinos given off by the radioactive decay of uranium and thorium in the Earth to better understand mantle convection driving tectonic plates.

Due to go operational in the latter half of 2025, JUNO will outpace the far larger Deep Underground Neutrino Experiment (DUNE) under construction in the United States. DUNE, backed by the Long-Baseline Neutrino Facility (LBNF) under the U.S. Department of Energy's (DOE) top particle physics laboratory, Fermilab, will come online around 2030.

The race to understand neutrinos and advance the study of particle physics, which has transformed medical imaging technologies and developed new energy sources, intensified when the DOE abruptly cut funding for U.S. institutes collaborating on JUNO. It instead focused on building DUNE, which has since been plagued by delays and budget overruns, with costs skyrocketing to more than $3 billion.

"China had supported Fermilab's LBNF at the time, but later the cooperation could not continue," Wang Yifang, chief scientist and project manager of JUNO, told Reuters during a recent government-backed media tour of the facility. "Around 2018-2019, the U.S. DOE asked all national laboratories not to cooperate with China, so Fermilab was forced to stop working with us."

The DOE, the largest U.S. funding agency for particle physics, did not respond to Reuters' request for comment.

Sino-U.S. tensions have risen sharply over the past decade. A trade war erupted during the Trump administration and President Joe Biden later cracked down on the sale of advanced technology to China.

In August, a bilateral science and technology cooperation pact signed in 1979 lapsed, potentially pushing more scientists to seek alternative partners, creating duplication in research and missing out on collaboration that otherwise might have led to beneficial discoveries.

In the 2010s, the countries jointly produced a nuclear reactor that could use low-enriched uranium, minimising the risk of any fuel being weaponised.

China's foreign ministry said Beijing was "in communication" with Washington about the lapsed science agreement. The U.S. State Department did not comment.

SOLE U.S. COLLABORATOR

Institutions collaborating on JUNO hail from locations including France, Germany, Italy, Russia and the U.S., and even self-governed Taiwan, which China claims as part of its territory.

Neutrino observatories are also being constructed in other places.

"The one in the U.S. will be six years behind us. And the one in the France and in Japan, they will be two or three years later than us. So we believe that we can get the result of mass hierarchy (of neutrinos) ahead of everybody," Wang said.

So far, real-life neutrino applications remain a distant prospect. Some scientists have mulled the possibility of relaying long-distance messages via neutrinos, which pass through solid matter such as the Earth at near light speed.

Researchers are keeping their distance from politics to focus on the science, although they remain at the mercy of governments providing the funding.

One U.S. group remains in JUNO, backed by the National Science Foundation, which recently renewed its funding for its collaboration for another three years, the group's leading physicist told Reuters.

In contrast, more than a dozen U.S. institutes participated in the predecessor to JUNO, the Daya Bay experiment, also in Guangdong.

"Despite any political differences, I believe that through our collaboration on this scientific endeavour, we are setting a positive example that may contribute, even in a small way, to bringing our countries closer together," said J. Pedro Ochoa-Ricoux of the University of California, Irvine.

DATA INTEGRITY


The passage of neutrinos from the two power stations will be logged by JUNO's 600 metric ton spherical detector, which will immediately transmit the data to Beijing electronically. The data will be simultaneously relayed to Russia, France and Italy, where it can be accessed by all of the collaborating institutions, said Cao Jun, JUNO's deputy manager.

Data integrity has been a concern among foreign companies in China since a law was enacted in 2021 on the use, storage and transfer of data in the name of safeguarding national security.

"We have a protocol to make sure that no data is missing," Cao said.

For data on the more crucial aspects of the experiment, at least two independent teams will conduct analyses, with their results cross-checked.

"When these two groups get a consistent result, we can publish it," Cao said.

U.S.-based Ochoa-Ricoux, who previously collaborated on China's Daya Bay experiment, will lead the data analysis for JUNO. He will also be involved in the DUNE data analysis.

"We welcome the Americans," said Wang, also director of the Institute of High Energy Physics, the Chinese counterpart of Fermilab.

Website: International Research Awards on High Energy Physics and Computational Science.

#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics
#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience
#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing
#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link : https://hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
Contact us : contact@sciencefather.com


Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA

Tuesday, October 15, 2024

Hunter's supermoon, a comet, and Orionids meteors are sharing the sky this week






This week, the October sky is treating us to a brilliant display that you won’t want to miss — the Hunter’s supermoon, a rare comet, and the Orionids meteor shower.

Comet C/2023 A3 Tsuchinshan-ATLAS is a rare comet making its journey past Earth, offering a unique opportunity to witness its tail of icy particles glistening against the dark canvas of space.

In addition, this week features the biggest supermoon of the year, Hunter’s supermoon, which will illuminate the night with a breathtaking orangish glow.

And let’s not forget the dazzling Orionids meteor shower, where you can catch glimpses of shooting stars streaking across the sky, resulting from debris left by Halley’s Comet.

There’s truly something for everyone in this celestial display. So, grab a warm jacket, perhaps a pair of binoculars for a closer look.

80,000-year-old time traveler

Meet Comet C/2023 A3 Tsuchinshan-ATLAS, a celestial wanderer that’s been on an 80,000-year long odyssey.

From the outermost regions of our solar system, this comet embarks on an interminable journey around the sun. The last time it paid us a visit, our ancestors were just crafting civilizations.

Although its closest Earth pass was on October 12, it remains visible for the remainder of the month.

So, how do you spot it? An hour into the sunset, turn your sight to where the sun has sunk and voila. The elusive comet, while difficult to sight with the naked eye, could be seen with a pair of binoculars.

Hunter’s Supermoon

Next up…mark your calendars for October 17, 2024. The night sky is all set to parade the Hunter’s Moon, but this year it’s not just a full moon — it’s a supermoon!

This phenomenon occurs when the moon is at its closest to Earth during its full phase, making it larger and brighter.

The Hunter’s Moon got its name from the historical practice of hunters utilizing the bright moonlight to track game and gather food in preparation for winter. This full moon rises soon after sunset, extending the period of illumination more than usual.

As it ascends, the Hunter’s Moon appears particularly large and orange, a visual effect produced by its lower position on the horizon and the scattering of light in the atmosphere.

This lunar phase holds cultural significance across various traditions, representing a time for preparation and gathering, underscoring the importance of readiness for the impending colder months.

While contemporary life may not depend on this extra light to hunt or complete outdoor tasks, the Hunter’s Moon remains a fascinating reminder of nature’s rhythms and the cyclical changes of the seasons.

Website: International Research Awards on High Energy Physics and Computational Science.

#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics
#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience
#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing
#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link : https://hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
Contact us : contact@sciencefather.com


Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA

chiral spin textures in centrosymmetric iron garnet#sciencefather# High ...

New quantum computing controls seek to advance efforts by the US and its allies and slow adversaries’ production






The DOC has released an interim final rule that will license export controls for a 38-plus member coalition of ‘like minded countries,’ seemingly attempting to thwart advances by China, Russia and others.

With the US and its allies in a semiconductor arms race, the Biden administration is continuing to push its efforts to keep the technology out of the “wrong hands” with new chip-related export controls.

The US Department of Commerce (DOC) this week released an interim final rule that will enforce License Exception Implemented Export Controls (IEC) for a 38-plus member coalition of “like-minded countries.” There is a 60-day public comment period before the final ruling.

“Aligning our controls on quantum and other advanced technologies makes it significantly more difficult for our adversaries to develop and deploy these technologies in ways that threaten our collective security,” Alan Estevez, under secretary for the Bureau of Industry and Security (BIS), said in a release.

While China is not explicitly named, it’s pretty heavily implied that this applies to that country, although it’s been clear that it has been able to get around such restrictions in the past, including gaining access to highly sought-after Nvidia chips. The DOC release does emphasize, however, that this is part of an ongoing effort to strengthen export controls to “degrade” the military capabilities of Russia and its “enablers,” Iran and Belarus.

Both the Biden and Trump administrations have used export controls to limit access to advanced semiconductor manufacturing equipment, explained James Sanders, senior analyst at TechInsights. “Including quantum computing in the latest set of rules is easiest to understand as an extension of controls limiting access to high-performance chips for artificial intelligence,” he told CIO.


Website: International Research Awards on High Energy Physics and Computational Science.

#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics
#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience
#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing
#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link : hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners :hep-conferences.sciencefather.com/awards-winners/
Contact us : contact@sciencefather.com


Get Connected Here:
==================
Social Media Link
Twitter :x.com/Psciencefather?mx=2
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA

Monday, October 14, 2024

POKER Detector: Dark Sector Breakthrough! #sciencefather #physics # scie...

Northwestern to lead $20 million National AI Research Institute in Astronomy








A large multi-institutional collaboration, led by Northwestern University, has received a $20 million grant to develop and apply new artificial intelligence (AI) tools to astrophysics research and deep space exploration.

Jointly funded by the National Science Foundation (NSF) and the Simons Foundation, the highly competitive grant will establish the NSF-Simons AI Institute for the Sky (SkAI, pronounced “sky”). SkAI is one of two National AI Research Institutes in Astronomy announced today. Northwestern astrophysicist Vicky Kalogera is principal investigator of the grant and will serve as the director of SkAI. Northwestern AI expert Aggelos Katsaggelos is a co-principal investigator of the grant.

The new institute will unite multidisciplinary researchers to develop innovative, trustworthy AI tools for astronomy, which will be used to pursue breakthrough discoveries by analyzing large astronomy datasets, transform physics-based simulations and more. With unprecedentedly large sky surveys poised to launch, including from the Vera C. Rubin Observatory in Chile, astronomers will require smarter, more efficient tools to accelerate the mining and interpretation of increasingly large datasets. SkAI will fulfill a crucial role in developing and refining these tools.

“I am thrilled to receive this opportunity to work with our amazing cross-disciplinary, multi-institutional team, so we can accelerate the data-driven revolution that wide and deep sky surveys will bring to the field of astronomy,” Kalogera said. “We will transform our astrophysical understanding across an enormous range of scales — from stars and the transients they produce to the evolving galaxies they live in, the black holes they form, and the dark sector of the universe and its cosmological origins.”

Kalogera is the Daniel I. Linzer Distinguished Professor of Physics and Astronomy in the Weinberg College of Arts and Sciences and director of Northwestern’s Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA). Katsaggelos is the Joseph Cummings Professor of Electrical and Computer Engineering at the McCormick School of Engineering, co-director of the Center for Scientific Studies in the Arts and has courtesy appointments in computer science and radiology.

“One of Northwestern’s stated priorities is to harness the power of data analytics and artificial intelligence, so I couldn’t be more excited about a partnership so in line with our vision,” Northwestern Provost Kathleen Hagerty said. “Similarly, interdisciplinary innovation is core to the Northwestern ethos. With potential to make a positive impact on our students and faculty, our local community and the global scientific community, this collaboration checks all the boxes.”


Website: International Research Awards on High Energy Physics and Computational Science.

#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics
#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience
#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing
#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link : hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners :hep-conferences.sciencefather.com/awards-winners/
Contact us : contact@sciencefather.com


Get Connected Here:
==================
Social Media Link
Twitter :x.com/Psciencefather?mx=2
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA

Friday, October 11, 2024

Exploring High Energy Astro physics #sciencefather # physics # science #...

Quantum Computing Transformed by Breakthrough Photonic Technology





A recent quantum computing breakthrough has enhanced the scalability and efficiency of quantum computations, moving closer to practical quantum computing advancements.

A new study published in Nature Photonics by Prof. Yaron Bromberg and Dr. Ohad Lib from the Racah Institute of Physics at the Hebrew University of Jerusalem has made significant strides in advancing quantum computing through their research on photonic-measurement-based quantum computation. This method has the potential to overcome some of the significant challenges in quantum computation, offering a scalable and resource-efficient solution by utilizing high-dimensional spatial encoding to generate large cluster states.

Quantum computers currently encounter a major bottleneck in producing the large cluster states essential for computations. The conventional approach results in exponentially decreasing detection probabilities as the number of photons increases. Prof. Bromberg and Dr. Lib’s study tackles this problem by encoding multiple qubits within each photon using spatial encoding. This pioneering approach has successfully generated cluster states containing over nine qubits at a frequency of 100 Hz, marking a notable achievement in the field.
Enhancing Quantum Computation Efficiency

Additionally, the researchers demonstrated that this method substantially reduces computation time by enabling instantaneous feedforward between qubits encoded within the same photon. This breakthrough opens the door to more resource-efficient quantum computations, potentially leading to faster, fault-tolerant quantum computers capable of handling complex problems.

Prof. Bromberg commented, “Our results show that using high-dimensional encoding not only overcomes previous scalability barriers but also offers a practical and efficient approach to quantum computing. This represents a major leap forward.”
Future Implications for Quantum Technology

Dr. Lib added, “By tackling both scalability and computation duration issues, we’ve paved a new way forward for measurement-based quantum computation. The future of quantum technology just became a little closer.”

This study marks an important milestone in the ongoing pursuit of realizing the full potential of quantum computing through photonics.


Website: International Research Awards on High Energy Physics and Computational Science.

#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics
#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience
#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing
#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link : hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners :hep-conferences.sciencefather.com/awards-winners/
Contact us : contact@sciencefather.com


Get Connected Here:
==================
Social Media Link
Twitter :x.com/Psciencefather?mx=2
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA

Wednesday, October 9, 2024

Revolutionary Electron Momentum Filter #sciencefather #High energy physi...

Mysterious form of high-energy radiation spotted in thunderstorms




Physicists have discovered a new form of γ-ray radiation that emerges from tropical thunderstorms and shown that such invisible bursts of energy are more common on Earth than previously thought. The phenomenon is described in two studies published in Nature on 2 October.

“These papers are game-changers for the field,” says Joseph Dwyer, a physicist at the University of New Hampshire in Durham. The findings add a new animal to the “zoo” of high-energy phenomena seen in storms, he adds. “These two papers are very important and will make a big splash in the thunderstorm and lightning community.”

More energetic than X-rays, γ-radiation is found around black holes, and other extreme cosmic environments. It is also seen on Earth, and its origins could help to explain what initiates lightning, which often follows these events. The trigger for lightning has remained a mystery for centuries because observations struggle to find electric fields strong enough to initiate it.

Cold-war plane

A group led by scientists at the University of Bergen in Norway made the discoveries using instruments on a high-altitude ex-cold-war spy plane, converted by NASA. The single-pilot aircraft flew as close as 1.5 kilometres above storms in the Caribbean and Central America, during ten flights in 2023.

Scientists had previously documented two kinds of γ-ray phenomenon in storms — seconds-long glows and higher-intensity bursts known as terrestrial γ-ray flashes (TGFs), which last just millionths of a second. The mechanisms behind either are not well understood, nor is their relationship.




Detectors aboard the plane spotted both types of radiation appearing in the same storm. They saw around 500 glows and 130 TGFs — many more than they had anticipated. And the glows were not as expected. Rather than a steady hum, the radiation surged up and down in intensity, bubbling across a region around 100 kilometres wide, like a boiling pot of water.

Both kinds of radiation have rarely been observed before. “We saw that, over these tropical storms, they are really very common,” says Martino Marisaldi, a co-author and high-energy atmospheric physicist at the University of Bergen.

But the team also saw 24 instances of a new kind of γ-ray radiation: a flickering flash. These pulses grew out of glows and lasted as long as 250 milliseconds, with traits in between that of the other two types of radiation. During each flash, radiation spiked around a dozen times over around one-tenth of a second.

Electron soup

This newly observed radiation could be key to understanding how γ-rays come about on Earth. Scientists have known since the 1980s that storms can emit γ-rays. It happens when electric fields of around 100 million volts develop inside churning clouds, creating a natural particle accelerator. When cascades of electrons, zooming at close to light speed, collide with air molecules, they release γ-ray radiation. But where so many of these electrons come from remains uncertain.

Dwyer says that the latest data fit with a model that he introduced in 2003, in which high-energy radiation sometimes creates positrons, the antimatter counterparts to electrons. These would zoom in the opposite direction to electrons, in a cycle that creates fresh particle avalanches, which might explain the quantity of γ-rays and the flicker, says Dwyer.

That’s an “attractive possibility” worth exploring, says Teruaki Enoto, an astrophysicist studying extreme natural phenomena at the RIKEN Hakubi laboratory in Saitama, Japan.

Lightning strikes happened after most glows and flickering flashes, and at the same time as TGFs. Models suggest that the electron avalanche could partially discharge the cloud, causing the field to grow elsewhere and initiate lightning, adds Dwyer.


Website: International Research Awards on High Energy Physics and Computational Science.

#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics
#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience
#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing
#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link : hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners :hep-conferences.sciencefather.com/awards-winners/
Contact us : contact@sciencefather.com


Get Connected Here:
==================
Social Media Link
Twitter :x.com/Psciencefather?mx=2
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA

Tuesday, October 8, 2024

Sterile neutrinos as dark matter #sciencefather#High energy physics #sci...

AI pioneer Geoffrey Hinton, who warned of X-risk, wins Nobel Prize in Physics








Geoffrey E. Hinton, a leading artificial intelligence researcher and professor emeritus at the University of Toronto, has been awarded the 2024 Nobel Prize in Physics alongside John J. Hopfield of Princeton University.

The Royal Swedish Academy of Sciences has awarded both men the prize of 11 million Swedish kronor (approximately $1.06 million USD), to be shared equally between the laureates.

Hinton has been nicknamed by various outlets and fellow researchers as the “Godfather of AI” due to his revolutionary work in artificial neural networks, a foundational technology underpinning modern artificial intelligence.

Despite the recognition, Hinton has grown increasingly cautious about the future of AI. In 2023, he left his role then at Google’s DeepMind unit to speak more freely about the potential dangers posed by uncontrolled AI development.

Hinton has warned that rapid advancements in AI could lead to unintended and harmful consequences, including misinformation, job displacement, and even existential threats — including human extinction, or so-called “x-risk.” He has expressed concern that the very technology he helped create may eventually surpass human intelligence in unpredictable ways, a scenario he finds particularly troubling.

As MIT Tech Review reported after interviewing him in May 2023, Hinton was particularly concerned about bad actors, such as authoritarian leaders, who could use AI to manipulate elections, wage wars, or carry out immoral objectives. He expressed concern that AI systems, when tasked with achieving goals, may develop dangerous subgoals, like monopolizing energy resources or self-replication.

While Hinton did not sign the high-profile letters calling for a moratorium on AI development, his departure from Google signaled a pivotal moment for the tech industry.

Hinton believes that, without global regulation, AI systems could become uncontrollable, a sentiment echoed by many within the field. His vision for AI is now shaped by both its immense potential and the looming risks it carries.


Website: International Research Awards on High Energy Physics and Computational Science.

#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics
#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience
#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing
#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link : hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners :hep-conferences.sciencefather.com/awards-winners/
Contact us : contact@sciencefather.com


Get Connected Here:
==================
Social Media Link
Twitter :x.com/Psciencefather?mx=2
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA

Scientists spin diamonds at a billion RPM to test the limits of physics








Representative image of diamond-shaped crystals adorning a wall. Purdue University physicists have reported levitating nanodiamonds in a vacuum and spinning them very fast. It sounds like a simple, even comical, feat but is actually quite difficult.

As scientists’ understanding of the basic properties of matter has improved over time, they have been able to engineer materials with the best properties for specific applications. Such bespoke materials have revolutionised various sectors, including medical diagnostics, spaceflight, cryptography, commercial electronics, and computing. One such material is the fluorescent nanodiamond (FND).

FNDs are nanometre-sized diamonds made of carbon nanoparticles. They are produced in a high temperature and high pressure process. FNDs are stable under light and aren’t toxic to living things, so they have many applications in high-resolution imaging, microscale temperature sensing, and correlative microscopy, among others. In biology, scientists use FNDs to track cells and their progeny over long periods.


Website: International Research Awards on High Energy Physics and Computational Science.

#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics
#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience
#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing
#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link : hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners :hep-conferences.sciencefather.com/awards-winners/
Contact us : contact@sciencefather.com


Get Connected Here:
==================
Social Media Link
Twitter :x.com/Psciencefather?mx=2
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA

Nanocomposite Scintillators: Revolutionizing High-Energy Physics #scienc...

Sunday, October 6, 2024

50-Year-Old Physics Theory Proven for the First Time With Electromagnetic Waves







Physicists at the University of Southampton have successfully tested and confirmed a 50-year-old theory for the first time using electromagnetic waves.

Their experiments demonstrated that the energy of waves can be amplified by bouncing ‘twisted waves’—waves with angular momentum—off a rotating object under specific conditions.

This is known as the ‘Zel’dovich effect’, named after Soviet physicist Yakov Zel’dovich who developed a theory based on this idea in the 1970s. Until now, it was believed to be unobservable with electromagnetic fields.

“The Zel’dovich effect works on the principle that waves with angular momentum, that would usually be absorbed by an object, actually become amplified by that object instead, if it is rotating at a fast enough angular velocity. In this case, the object is an aluminum cylinder and it must rotate faster than the frequency of the incoming radiation,” explains a Research Fellow at the University of Southampton, Dr. Marion Cromb.

“Colleagues and I successfully tested this theory in sound waves a few years ago, but until this most recent experiment, it hadn’t been proven with electromagnetic waves. Using relatively simple equipment – a resonant circuit interacting with a spinning metal cylinder – and by creating the specific conditions required, we have now been able to do this.”

Connection to the Doppler Effect

The Zel’dovich effect is difficult to observe, but has links to a well-known phenomenon called the Doppler effect which we all experience around us every day.

Imagine you are standing on a busy road and a police car races towards you with its siren going. From your perspective, as it approaches the siren sounds higher pitched than when it has passed.

This is because the sound waves in front of the car coming towards you are compressed, at a high frequency – hence a higher pitch. Behind the car, as it moves away, they are more spread out at a lower frequency – resulting in a lower pitch. This is the Doppler effect.

This can also be applied to light waves. In fact, astronomers use it to understand whether a planetary body is moving towards, or away from the Earth, according to the frequency of the light waves seen from their point of observation.

A similar ‘rotational Doppler’ frequency shift happens for twisted waves and relative rotation.

In the Zel’dovich effect, the metal cylinder needs to rotate fast enough that from its perspective it ‘sees’ a ‘twisted wave’ shift in angular frequency, so much that it actually goes to a negative frequency. This changes the way the wave interacts with the cylinder. Usually the metal would absorb the wave, but when the wave frequency ‘goes negative’ the wave is in fact amplified – reflecting off the cylinder with more energy than when it approached.

“The condition for amplification is from the rotating perspective of the object,” explains Marion Cromb. “Twisting electromagnetic fields hitting it have become rotationally Doppler shifted, so much (or so low) that they’ve gone through zero and into a ‘negative’ angular frequency. Negative frequency then means negative absorption, and this means amplification.”

Website: International Research Awards on High Energy Physics and Computational Science.

#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics
#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience
#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing
#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link : hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners :hep-conferences.sciencefather.com/awards-winners/
Contact us : contact@sciencefather.com


Get Connected Here:
==================
Social Media Link
Twitter :x.com/Psciencefather?mx=2
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA

Saturday, October 5, 2024

Plasma Astrophysics and Modern Plasma Cosmology #sciencefather #high ene...

Neutron Star Collisions: Unmasking the Ghosts of Gravity







Scientists are using advanced simulations to explore the aftermath of neutron star collisions, where remnants might form and avoid collapsing into black holes.

Mysterious Aftermath of Neutron Star Collisions

In the aftermath of a collision of neutron stars, a new celestial object called a remnant emerges, shrouded in mystery. Scientists are still unraveling its secrets, including whether it collapses into a black hole and how quickly this might happen.

Through advanced supercomputer simulations, scientists have delved into the internal structure of these remnants and explored their cooling process, primarily through neutrino emissions. These findings reveal a central object surrounded by a rapidly rotating ring of hot matter. If these remnants avoid collapse, scientists expect that they release the majority of their internal energy within seconds of when they form.

Exploring the Evolution of Neutron Stars

By observing when neutron stars merge in space, scientists gain insights into how nuclear matter behaves under extreme conditions that cannot be replicated on Earth. Nuclear matter is a hypothetical substance made up of protons and neutrons held together by the strong force. Of particular interest to scientists is whether the pressure from the strong force can stop black holes from forming.

In this study, scientists focused on what happens after neutron stars merge but don’t become black holes. The research explored neutron stars’ early evolution, just moments after they were created. This research is a starting point for identifying the astronomical signals that could help answer questions about neutron stars and black hole formation.

Advanced Simulations Reveal Neutron Star Dynamics

Scientists at Pennsylvania State University have used supercomputer simulations with general-relativistic neutrino-radiation hydrodynamics to understand the internal structure of neutron star merger remnants. They also studied how the remnant cools down by emitting neutrinos.

This work used the computational resources available through the Department of Energy’s National Energy Research Scientific Computing Center, the Leibniz Supercomputing Centre in (Germany), and the Institute for Computational and Data Science at Pennsylvania State University.
Unique Cooling Properties of Neutron Star Remnants

The research found that neutron star merger remnants consist of a central object endowed with most of the mass of the system, surrounded by a ring of hot matter in fast rotation that contains a small fraction of the mass but a large fraction of the angular momentum. Unlike most stars, the inner remnant has a higher temperature on its surface than in its core, so convective plumes are not expected to form as the remnant cools down by emitting neutrinos.

Website: International Research Awards on High Energy Physics and Computational Science.

#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics
#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience
#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing
#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link : hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners :hep-conferences.sciencefather.com/awards-winners/
Contact us : contact@sciencefather.com


Get Connected Here:
==================
Social Media Link
Twitter :x.com/Psciencefather?mx=2
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA

Thursday, October 3, 2024

Heavy ion collisions could create the world’s strongest electric field




A theoretical analysis by a RIKEN physicist and two colleagues recently suggests that lab experiments worldwide aimed at recreating the mysterious phase of matter from the early universe may also generate the strongest electromagnetic fields on Earth.

The Standard Model of particle physics suggests that when extremely hot matter is compressed into an ultradense object, it forms a plasma of quarks and gluons. However, experiments are necessary to confirm this hypothesis.

Despite the existence of such experiments, there are substantial theoretical uncertainties, especially at ultrahigh densities. Hence, experiments are greatly needed to study this extreme form of matter.

In new experiments, scientists first collided with heavy ions. They then examined the resultant plasma.

Hidetoshi Taya of the RIKEN Interdisciplinary Theoretical and Mathematical Sciences Program had previously researched intense lasers and the solid electromagnetic fields they generate. He recognized that similar but significantly stronger fields could arise unexpectedly from collision experiments. This prospect is exciting for physicists, who believe these ultrastrong fields could lead to novel physical phenomena.

However, to date, physicists have not been able to generate fields strong enough to check this possibility.

Taya and his colleagues have conducted a theoretical analysis indicating that heavy-ion collisions at intermediate energies can produce ultra-strong electric fields that are both powerful and long-lived enough to explore strong-field physics, which is inaccessible through other experiments.

However, in upcoming collision experiments, physicists won’t be able to measure these fields directly; they will only be able to observe the particles produced and analyze their properties.



Website: International Research Awards on High Energy Physics and Computational Science. 

#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics
#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience
#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing
#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing