Thursday, October 24, 2024
“Dizzying” Discovery: Mysterious Electron-Path-Deflecting Effect Unlocks New Quantum Behaviors
Twisting tungsten disulfide crystals allows researchers to control electron movement and enhance optical properties, unlocking new possibilities for quantum materials and photonic applications.
In 2018, a discovery in materials science sent shock waves throughout the community. A team showed that stacking two layers of graphene a honeycomb-like layer of carbon extracted from graphite at a precise “magic angle” turned it into a superconductor, says Ritesh Agarwal of the University of Pennsylvania. This sparked the field of “twistronics,” revealing that twisting layered materials could unlock extraordinary material properties.
Building on this concept, Agarwal, Penn theoretical physicist Eugene Mele, and collaborators have taken twistronics into new territory. In a study published in Nature, they investigated spirally stacked tungsten disulfide (WS₂) crystals and discovered that, by twisting these layers, light could be used to manipulate electrons. The result is analogous to the Coriolis force, which curves the paths of objects in a rotating frame, like how wind and ocean currents behave on Earth.
“What we discovered is that by simply twisting the material, we could control how electrons move,” says Agarwal, Srinivasa Ramanujan Distinguished Scholar in the School of Engineering and Applied Science. This phenomenon was particularly evident when the team shined circularly polarized light on WS₂ spirals, causing electrons to deflect in different directions based on the material’s internal twist.
The origins of the team’s latest findings trace back to the early days of the COVID-19 pandemic lockdowns when the lab was shut down and first author Zhurun (Judy) Ji was wrapping up her Ph.D.
Unable to conduct physical experiments in the space, she shifted her focus to more theoretical work and collaborated with Mele, the Christopher H. Browne Distinguished Professor of Physics in the School of Arts & Sciences. Together, they developed a theoretical model for electron behavior in twisted environments, based on the speculation that a continuously twisted lattice would create a strange, complex landscape where electrons could exhibit new quantum behaviors.
“The structure of these materials is reminiscent of DNA or a spiral staircase. This means that the usual rules of periodicity in a crystal where atoms sit in neat, repeating patterns no longer apply,” Ji says.
Experimental Breakthroughs
As 2021 arrived and pandemic restrictions lifted, Agarwal learned during a scientific conference that former colleague Song Jin of the University of Wisconsin-Madison was growing crystals with a continuous spiral twist. Recognizing that Jin’s spirally twisted WS₂ crystals were the perfect material to test Ji and Mele’s theories, Agarwal arranged for Jin to send over a batch. The experimental results were intriguing.
Mele says the effect mirrored the Coriolis force, an observation that is usually associated with the mysterious sideways deflections seen in rotating systems. Mathematically, this force closely resembles a magnetic deflection, explaining why the electrons behaved as though a magnetic field were present even when there was none. This insight was crucial, as it tied together the twisting of the crystal and the interaction with circularly polarized light.
Agarwal and Mele compare the electron response to the classic Hall effect wherein current flowing through a conductor is deflected sideways by a magnetic field. But, while the Hall effect is driven by a magnetic field, here “the twisting structure and the Coriolis-like force were guiding the electrons,” Mele says. “The discovery wasn’t just about finding this force; it was about understanding when and why it appears and, more importantly, when it shouldn’t.”
One of the major challenges, Mele adds, was that, once they recognized this Coriolis deflection could occur in a twisted crystal, it seemed that the idea was working too well. The effect appeared so naturally in the theory that it appeared hard to switch off even in scenarios where it shouldn’t exist. It took nearly a year to establish the exact conditions under which this phenomenon could be observed or suppressed.
Agarwal likens the behavior of electrons in these materials to “going down a slide at a water park. If an electron went down a straight slide, like conventional material lattices, everything would be smooth. But, if you send it down a spiraling slide, it’s a completely different experience. The electron feels forces pushing it in different directions and come out the other end altered, kind of like being a little ‘dizzy.’”
This “dizziness” is particularly exciting to the team because it introduces a new degree of control over electron movement, achieved purely through the geometric twist of the material. What’s more, the work also revealed a strong optical nonlinearity, meaning that the material’s response to light was amplified significantly.
“In typical materials, optical nonlinearity is weak,” Agarwal says, “but in our twisted system, it’s remarkably strong, suggesting potential applications in photonic devices and sensors.”
Website: International Research Awards on High Energy Physics and Computational Science.
#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics
#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience
#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing
#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing
Visit Our Website : hep-conferences.sciencefather.com
Nomination Link : https://hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
Contact us : contact@sciencefather.com
Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA
Subscribe to:
Post Comments (Atom)
Quantum Leap: Scientists Successfully Control New Energy Range States
Scientists have controlled hybrid quantum states in helium using intense ultraviolet lasers, opening new paths in quantum research. An inter...
-
Exotic particle Artist’s impression of a tetraquark showing its four constituent quarks. (Courtesy: CERN) A theoretical study has confir...
-
The Science Certain isotopes such as Indium-115 (In-115) are extremely long lived, taking over 100 trillon years for half of the Indium at...
-
One of the first versions of AI was a computer that played chess. Developed in the 1950s, it could play a full game without the input of ...
No comments:
Post a Comment