Skip to main content

3D Printed Optical Pressure Sensor!



Discover the groundbreaking capabilities of a polymer Fabry-Perot interferometer-based microcavity in this comprehensive overview video. We'll introduce you to this innovative non-contact optical pressure sensor, exploring its sophisticated design featuring a hollow cavity and unique pressure-sensing mechanism. Learn about the impressive performance metrics such as sensitivity and stability that make this sensor a game-changer. Finally, we'll delve into its promising applications in the biomedical and aerospace industries. Don't forget to like and share this video to spread knowledge about this cutting-edge technology!

#OpticalPressureSensor #FabryPerotInterferometer #BiomedicalTechnology #AerospaceInnovation #SensorTechnology #Microcavity #NonContactSensor #ScienceFather #scifax #ScienceDad #proffessor #students #ResearchScholar #awardwinner #scientist #PhD #acedemic More Details: Title: International Research Awards on High Energy Physics and Computational Science by ScienceFather. Website: physics.sciencefather.com Visit Our Award Nomination : https://hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee Contact us : Physicsinquiry@sciencefather.com Get Connected Here: ================== Facebook : https://www.facebook.com/profile.php?id=100089114473152 Instagram : https://www.instagram.com/victoriaanisa1/ Twitter : https://twitter.com/Psciencefather Pinterest : https://in.pinterest.com/victoriaanisa1/ Blog : https://physicscience23.blogspot.com/ tumblr : https://www.tumblr.com/blog/high-energy-physics

Comments

Popular posts from this blog

"Explore the Fourth Dimension"

Fourth Dimension   The fourth dimension is a fascinating concept that has captured the imaginations of scientists, mathematicians, and artists for centuries. Unlike our three-dimensional world, which is limited by the linear flow of time, the fourth dimension is a realm of space and time that exists beyond our everyday experience. One way to visualize the fourth dimension is through the use of a hypercube, also known as a tesseract. A hypercube is a cube within a cube, with additional lines and edges connecting the vertices of the two cubes. It's impossible to construct in our three-dimensional world, but it provides a glimpse into what the fourth dimension might look like. Another way to understand the fourth dimension is through the concept of a wormhole, a theoretical passage through space-time that connects two distant points in the universe. A wormhole is like a shortcut through the fabric of space-time, allowing us to travel vast distances in an instant. While there is no de...

Physicists observe a new form of magnetism for the first time

MIT physicists have demonstrated a new form of magnetism that could one day be harnessed to build faster, denser, and less power-hungry " spintronic " memory chips. The new magnetic state is a mash-up of two main forms of magnetism: the ferromagnetism of everyday fridge magnets and compass needles, and antiferromagnetism, in which materials have magnetic properties at the microscale yet are not macroscopically magnetized. Now, the MIT team has demonstrated a new form of magnetism , termed "p-wave magnetism." Physicists have long observed that electrons of atoms in regular ferromagnets share the same orientation of "spin," like so many tiny compasses pointing in the same direction. This spin alignment generates a magnetic field, which gives a ferromagnet its inherent magnetism. Electrons belonging to magnetic atoms in an antiferromagnet also have spin, although these spins alternate, with electrons orbiting neighboring atoms aligning their spins antiparalle...

Quantum Tunneling Breakthrough: Technion Scientists Move Atoms With Precision

In a groundbreaking experiment at the Technion Faculty of Physics , researchers demonstrated the transfer of atoms via quantum tunneling using optical tweezers. This novel method, which strategically avoids trapping atoms in the middle tweezer, represents a notable stride toward innovative quantum technologies. Quantum Tunneling in Optical Tweezers A new experiment at the Technion Faculty of Physics demonstrates how atoms can be transferred between locations using quantum tunneling with optical tweezers. Led by Prof. Yoav Sagi and doctoral student Yanay Florshaim from the Solid State Institute, this research was published recently in Science Advances. The experiment relies on optical tweezers , a powerful tool that uses focused laser beams to trap and manipulate tiny particles like atoms, molecules, and even living cells. Here’s how it works: when light interacts with matter, it creates a force proportional to the light’s intensity. This force, though too weak to impact larger objects,...