Skip to main content

United Nations declares 2025 the International Year of Quantum Science and Technology

 


The International Year of Quantum Science and Technology follows several other recent science-based international years, including the periodic table of chemical elements in 2019 and light and light-based technologies in 2015.


The United Nations (UN) has officially declared 2025 to be the International Year of Quantum Science and Technology (IYQ). Agreed by its general assembly, the year-long worldwide celebration will highlight the impact and contribution of quantum science. It also aims to ensure that all nations have equal access to quantum education and opportunities. An opening ceremony is expected to take place on 14 January in Berlin.

The campaign for 2025 to celebrate quantum science has been led since 2021 by the American Physical Society and the German Physical Society (DPG). The year was chosen as it marks the centenary of Werner Heisenberg’s efforts to develop the mathematical formulation of quantum phenomena. The proposal was soon supported by other societies, including the Institute of Physics as well as the International Union of Pure and Applied Physics.

In May 2023 the executive board of the United Nations Educational, Scientific, and Cultural Organization (UNESCO) endorsed a resolution encouraging an official UN quantum year. That was followed by an endorsement at the UNESCO general conference last November. In May, Ghana submitted a draft resolution for the official proclamation of the IYQ in 2025 to the UN General Assembly. It was supported by more than 70 countries and the resolution was  approved by the general assembly on 7 June.

“Through this proclamation, we will bring quantum [science] education and research to young people in Africa and developing countries around the world with the hope of inspiring the next generation of scientists,” notes Riche-Mike Wellington, chief programme specialist at the Ghana Commission for UNESCO and the Ghanaian representative for IYQ. The IYQ consortium will now organize regional, national and international outreach events and activities throughout 2025 to celebrate and develop quantum science. “Inventions such as magnetic resonance imaging in hospitals, lasers, solar cells and the smallest chips as the basic building blocks of computers all owe their existence to quantum mechanics,” says DPG president Klaus Richter, a condensed-matter physicist from the University of Regensburg. “These and other quantum technologies give new impetus to our economic development and influence numerous areas of everyday life. Quantum mechanics is a prime example of the practical impact that an abstract physical theory can have.” The IYQ follows several other recent science-based UN International Years, including the International Year of the Periodic Table of Chemical Elements in 2019, light and light-based technologies (2015) and crystallography (2014).


International Research Conference on High Energy Physics and Computational Science

More details: -----------------
Visit Our Website : https://x-i.me/hep
Visit Our Conference Submission : https://x-i.me/hepcon
Visit Our Award Nomination : https://x-i.me/hepnom

Get Connected Here: ==================


Comments

Popular posts from this blog

Physicists observe a new form of magnetism for the first time

MIT physicists have demonstrated a new form of magnetism that could one day be harnessed to build faster, denser, and less power-hungry " spintronic " memory chips. The new magnetic state is a mash-up of two main forms of magnetism: the ferromagnetism of everyday fridge magnets and compass needles, and antiferromagnetism, in which materials have magnetic properties at the microscale yet are not macroscopically magnetized. Now, the MIT team has demonstrated a new form of magnetism , termed "p-wave magnetism." Physicists have long observed that electrons of atoms in regular ferromagnets share the same orientation of "spin," like so many tiny compasses pointing in the same direction. This spin alignment generates a magnetic field, which gives a ferromagnet its inherent magnetism. Electrons belonging to magnetic atoms in an antiferromagnet also have spin, although these spins alternate, with electrons orbiting neighboring atoms aligning their spins antiparalle...

new research in qauntum physics

         VISIT:https: //hep-conferences.sciencefather.com/          N ew research in  qauntum physics.                                                    Alphabet Has a Second, Secretive Quantum Computing Team Recent research in quantum physics includes the development of quantum computers, which are expected to be much more powerful than conventional computers and could revolutionize many aspects of technology, such as artificial intelligence and cryptography. Other research includes the development of quantum sensors for a variety of applications, including medical diagnostics, and the study of quantum entanglement and its potential to enable quantum computing and secure communication. Additionally, research is being conducted into the applications of quantum mechanics in materials science, such as unde...

Scientists Discover New “Hall Effect” That Could Revolutionize Electronics

Scientists discovered a new Hall effect driven by spin currents in noncollinear antiferromagnets, offering a path to more efficient and resilient spintronic devices . A research team led by Colorado State University graduate student Luke Wernert and Associate Professor Hua Chen has identified a previously unknown type of Hall effect that could lead to more energy-efficient electronic devices . Their study, published in Physical Review Letters, was conducted in collaboration with graduate student Bastián Pradenas and Professor Oleg Tchernyshyov of Johns Hopkins University. The researchers uncovered evidence of a new property, dubbed the “Hall mass,” in a class of complex magnetic materials known as noncollinear antiferromagnets . The traditional Hall effect, discovered by Edwin Hall at Johns Hopkins in 1879, describes how an electric current is deflected sideways when subjected to an external magnetic field, generating a measurable voltage. This effect plays a crucial role in technologi...