Skip to main content

Scientists identify a ‘sugar world’ beyond Neptune

 



I spy something red: Some of the molecules found on the surface of Arrokoth, a reddish, lumpy world located in the Kuiper belt. By bombarding samples of frozen methane with simulated cosmic rays, the research team succeeded in recreating Arrokoth's unusual colour slope. (Courtesy: Chaojiang Zhang)


Now here’s a discovery that’s pretty sweet: the most distant Solar System object ever visited by a spacecraft appears to be dusted with sugar. Known as Arrokoth, this small, irregularly shaped world is reddish in colour, and scientists in the US and France say that its unusual hue may be due to the presence of glucose and other forms of sugar on its surface. The discovery has implications for the origins of life, as comets could have delivered organic molecules from “sugar worlds” like Arrokoth to the early Earth.

Arrokoth orbits the Sun as part of the Kuiper belt of objects beyond the planet Neptune. Because it formed when two objects collided and fused together, it looks a little like a flattened snowman, with a “head” and “body” 15 and 21 km in diameter. Nicknamed “Ultima Thule” by scientists working on the New Horizons mission, it gets its formal name from a word meaning “sky” or “cloud” in the Powhatan language spoken by Native Americans who lived on what is now the US East Coast before European settlers arrived there.

Apart from its knobbly shape, Arrokoth’s most distinctive feature is its colour. Unlike pink-tinged Pluto – the largest Kuiper belt object (KBO), and the subject of New Horizons’ first flyby in 2015 – Arrokoth is darker and reddish. The cause of this unusual colouring, which also occurs in a few other KBOs, is not fully understood. However, New Horizons detected abundant frozen methanol (CH3OH) on Arrokoth’s surface when it flew past in 2019, and scientists had previously found that irradiating methanol with ions significantly reddens its spectrum.

Enter the energetic electrons

In the new study, a team led by chemists Ralf I Kaiser of the University of Hawai’i at Mānoa and Cornelia Meinert of the Université Côte d’Azur, France, together with planetary scientist Leslie A Young of the Southwest Research Institute in Boulder, Colorado, US, explored this possibility further by bombarding samples of methanol ice at 10 K and 40 K with energetic electrons. After exposing the samples to the equivalent of 1.8 billion years of galactic cosmic rays, they used a variety of spectroscopic methods to characterize the composition and colour of the organic molecules that formed.

The results showed that radiation bombardment can indeed replicate the colouration found on Arrokoth, with a dose of 57 eV per atomic mass unit creating an especially good colour match. Using gas chromatography and time-of-flight mass spectrometry, the team also identified sugar-related compounds such as glucose (C6H12O6) and ribose (C5H10O5) in residues of the radiation-exposed methanol ices. Some of these compounds, the researchers note, are incorporated into the molecules that make up RNA and lipids, providing what they call “a plausible source of this key class of prebiotic molecules for the evolution of life on early Earth”.


International Research Conference on High Energy Physics and Computational Science

More details: -----------------
Visit Our Website : https://x-i.me/hep
Visit Our Conference Submission : https://x-i.me/hepcon
Visit Our Award Nomination : https://x-i.me/hepnom

Get Connected Here: ==================

Comments

Popular posts from this blog

Physicists observe a new form of magnetism for the first time

MIT physicists have demonstrated a new form of magnetism that could one day be harnessed to build faster, denser, and less power-hungry " spintronic " memory chips. The new magnetic state is a mash-up of two main forms of magnetism: the ferromagnetism of everyday fridge magnets and compass needles, and antiferromagnetism, in which materials have magnetic properties at the microscale yet are not macroscopically magnetized. Now, the MIT team has demonstrated a new form of magnetism , termed "p-wave magnetism." Physicists have long observed that electrons of atoms in regular ferromagnets share the same orientation of "spin," like so many tiny compasses pointing in the same direction. This spin alignment generates a magnetic field, which gives a ferromagnet its inherent magnetism. Electrons belonging to magnetic atoms in an antiferromagnet also have spin, although these spins alternate, with electrons orbiting neighboring atoms aligning their spins antiparalle...

new research in qauntum physics

         VISIT:https: //hep-conferences.sciencefather.com/          N ew research in  qauntum physics.                                                    Alphabet Has a Second, Secretive Quantum Computing Team Recent research in quantum physics includes the development of quantum computers, which are expected to be much more powerful than conventional computers and could revolutionize many aspects of technology, such as artificial intelligence and cryptography. Other research includes the development of quantum sensors for a variety of applications, including medical diagnostics, and the study of quantum entanglement and its potential to enable quantum computing and secure communication. Additionally, research is being conducted into the applications of quantum mechanics in materials science, such as unde...

Freezing light? Italian scientists froze fastest thing in universe, here’s how

In a rare occurrence, physics made it possible to control the fastest travelling element - light. Italian scientists have managed to freeze the light, as per reports. A recent study published in a British weekly journal reportedly revealed that light can exhibit ‘ supersolid behavior ’ a unique state of matter that flows without friction while retaining a solid-like structure. The research, led by Antonio Gianfate from CNR Nanotec and Davide Nigro from the University of Pavia, marks a significant step in understanding supersolidity in light. The scientists described their findings as “just the beginning” of this exploration, as per reports. In what can be termed as ‘manipulating photons under controlled quantum conditions ’, the scientists demonstrated that light, too, can exhibit this behaviour. (A photon is a bundle of electromagnetic energy which is massless, and travel at the speed of light) How did scientists freeze light? As we know, freezing involves lowering a liquid’s tempera...