Skip to main content

Physics collaboration pushes an information engine to its limits

 




The molecules that make up the matter around us are in constant motion. What if we could harness that energy and put it to use?

Over 150 years ago, Maxwell theorized that if molecules' motion could be measured accurately, this information could be used to power an engine. Until recently this was a thought experiment, but technological breakthroughs have made it possible to build working information engines in the lab. SFU Physics professors John Bechhoefer and David Sivak teamed up to build an information engine and test its limits. Their work has greatly advanced our understanding of how these engines function, and a paper led by postdoctoral fellow Johan du Buisson and published recently in Advances in Physics: X summarizes the findings made during their collaboration.

"We live in a world full of extra unused energy that potentially could be used," says Bechhoefer. Understanding how information engines function can not only help us put that energy to work, it can also suggest ways that existing engines could be redesigned to use energy more efficiently, and help us learn how biological motors work in organisms and the human body.

The team's information engine consists of a tiny bead in a water bath that is held in place with an optical trap. When fluctuations in the water cause the bead to move in the desired direction, the trap can be adjusted to prevent the bead from returning to the place where it was before. By taking accurate measurements of the bead's location and using that information to adjust the trap, the engine is able to convert the heat energy of the water into work.


International Research Conference on High Energy Physics and Computational Science

More details: -----------------
Visit Our Website : https://x-i.me/hep
Visit Our Conference Submission : https://x-i.me/hepcon
Visit Our Award Nomination : https://x-i.me/hepnom

Get Connected Here: ==================


Comments

Popular posts from this blog

Physicists observe a new form of magnetism for the first time

MIT physicists have demonstrated a new form of magnetism that could one day be harnessed to build faster, denser, and less power-hungry " spintronic " memory chips. The new magnetic state is a mash-up of two main forms of magnetism: the ferromagnetism of everyday fridge magnets and compass needles, and antiferromagnetism, in which materials have magnetic properties at the microscale yet are not macroscopically magnetized. Now, the MIT team has demonstrated a new form of magnetism , termed "p-wave magnetism." Physicists have long observed that electrons of atoms in regular ferromagnets share the same orientation of "spin," like so many tiny compasses pointing in the same direction. This spin alignment generates a magnetic field, which gives a ferromagnet its inherent magnetism. Electrons belonging to magnetic atoms in an antiferromagnet also have spin, although these spins alternate, with electrons orbiting neighboring atoms aligning their spins antiparalle...

new research in qauntum physics

         VISIT:https: //hep-conferences.sciencefather.com/          N ew research in  qauntum physics.                                                    Alphabet Has a Second, Secretive Quantum Computing Team Recent research in quantum physics includes the development of quantum computers, which are expected to be much more powerful than conventional computers and could revolutionize many aspects of technology, such as artificial intelligence and cryptography. Other research includes the development of quantum sensors for a variety of applications, including medical diagnostics, and the study of quantum entanglement and its potential to enable quantum computing and secure communication. Additionally, research is being conducted into the applications of quantum mechanics in materials science, such as unde...

Freezing light? Italian scientists froze fastest thing in universe, here’s how

In a rare occurrence, physics made it possible to control the fastest travelling element - light. Italian scientists have managed to freeze the light, as per reports. A recent study published in a British weekly journal reportedly revealed that light can exhibit ‘ supersolid behavior ’ a unique state of matter that flows without friction while retaining a solid-like structure. The research, led by Antonio Gianfate from CNR Nanotec and Davide Nigro from the University of Pavia, marks a significant step in understanding supersolidity in light. The scientists described their findings as “just the beginning” of this exploration, as per reports. In what can be termed as ‘manipulating photons under controlled quantum conditions ’, the scientists demonstrated that light, too, can exhibit this behaviour. (A photon is a bundle of electromagnetic energy which is massless, and travel at the speed of light) How did scientists freeze light? As we know, freezing involves lowering a liquid’s tempera...