Skip to main content

protons

 





ParticleBites: ParticleBites is a blog that provides accessible summaries of recent particle physics papers. It covers various topics, including protons, and explains complex concepts in a simplified manner. Quantum Diaries: Quantum Diaries is a blog platform where scientists and researchers share their experiences and insights into particle physics. It covers a wide range of topics, including protons and their role in the fundamental structure of matter. CERN Blog: CERN, the European Organization for Nuclear Research, operates the Large Hadron Collider LHC) and conducts extensive research on protons. Their official blog provides updates on the latest research, experiments, and discoveries related to protons and other particles. Symmetry Magazine: Symmetry Magazine is a joint publication by Fermilab and SLAC National Accelerator Laboratory. It covers various topics in particle physics and offers articles, features, and interviews related to protons and their significance in the field. Physics World Blog: Physics World, a publication by the Institute of Physics (IOP), features a blog section that covers a wide range of physics topics. You can find posts related to protons, particle physics, and cutting-edge research in the field. Quora: While not a traditional blog, Quora is a platform where experts and enthusiasts answer questions related to various topics. You can find informative discussions and explanations about protons by searching or following relevant topics on Quora.





International Research Conference on High Energy Physics
Submit Your Conference Abstract: https://x-i.me/hepcon
Submit Your Award Nomination: https://x-i.me/hepnom


 

Get Connected Here:
==================

                                                    tumblr : https://www.tumblr.com/blog/high-energy-physics  

Comments

Popular posts from this blog

"Explore the Fourth Dimension"

Fourth Dimension   The fourth dimension is a fascinating concept that has captured the imaginations of scientists, mathematicians, and artists for centuries. Unlike our three-dimensional world, which is limited by the linear flow of time, the fourth dimension is a realm of space and time that exists beyond our everyday experience. One way to visualize the fourth dimension is through the use of a hypercube, also known as a tesseract. A hypercube is a cube within a cube, with additional lines and edges connecting the vertices of the two cubes. It's impossible to construct in our three-dimensional world, but it provides a glimpse into what the fourth dimension might look like. Another way to understand the fourth dimension is through the concept of a wormhole, a theoretical passage through space-time that connects two distant points in the universe. A wormhole is like a shortcut through the fabric of space-time, allowing us to travel vast distances in an instant. While there is no de...

Physicists observe a new form of magnetism for the first time

MIT physicists have demonstrated a new form of magnetism that could one day be harnessed to build faster, denser, and less power-hungry " spintronic " memory chips. The new magnetic state is a mash-up of two main forms of magnetism: the ferromagnetism of everyday fridge magnets and compass needles, and antiferromagnetism, in which materials have magnetic properties at the microscale yet are not macroscopically magnetized. Now, the MIT team has demonstrated a new form of magnetism , termed "p-wave magnetism." Physicists have long observed that electrons of atoms in regular ferromagnets share the same orientation of "spin," like so many tiny compasses pointing in the same direction. This spin alignment generates a magnetic field, which gives a ferromagnet its inherent magnetism. Electrons belonging to magnetic atoms in an antiferromagnet also have spin, although these spins alternate, with electrons orbiting neighboring atoms aligning their spins antiparalle...

Quantum Tunneling Breakthrough: Technion Scientists Move Atoms With Precision

In a groundbreaking experiment at the Technion Faculty of Physics , researchers demonstrated the transfer of atoms via quantum tunneling using optical tweezers. This novel method, which strategically avoids trapping atoms in the middle tweezer, represents a notable stride toward innovative quantum technologies. Quantum Tunneling in Optical Tweezers A new experiment at the Technion Faculty of Physics demonstrates how atoms can be transferred between locations using quantum tunneling with optical tweezers. Led by Prof. Yoav Sagi and doctoral student Yanay Florshaim from the Solid State Institute, this research was published recently in Science Advances. The experiment relies on optical tweezers , a powerful tool that uses focused laser beams to trap and manipulate tiny particles like atoms, molecules, and even living cells. Here’s how it works: when light interacts with matter, it creates a force proportional to the light’s intensity. This force, though too weak to impact larger objects,...