Skip to main content

Particle accelerator instrumentation

 



                                                                              Fig:1


Accelerator instrumentation refers to all the sensors installed in an accelerator to provide information on its operating status and to tune it. Two of the main applications are beam diagnostics − position and profile monitors in particular − and low-level radiofrequency sensors to tune the field of accelerating cavities powered by RF power supplies. IRFU's SIS and SEDI departments are particularly involved in R&D on this area.


Low-level radiofrequency (LLRF) systems





                                                                                      Fig: 2

 LLRF systems are used to control the RF field in accelerating cavities. These systems control the amplitude and phase of the RF field (fast tuning) and the cavity frequency (slow tuning), compensating for the effect of different types of disturbance such as vibrations, thermal stress, and the charge of the particle beam. The SIS develops the electronics for these systems, which is based mainly on the use of FPGA or DSP boards for fast digital processing of the RF signals coming from the cavity.

 

SACM develops general simulation tools for describing RF cavity operation with or without a beam, modeling various types of disturbance, considering the transfer functions of the associated high-power or low-level RF electronics, and representing accelerator field control modes.

                                           

SACM was involved in developing a prototype for the Soleil accelerator, and is now working with the SIS on making the LLRF systems for the Spiral 2 project (the SIS is in charge of these systems).

 

Beam position monitors

 

Beam based alignment and time of flight control are essential operations for particle accelerators. SACM is currently developing two types of beam position monitors (BPMs) based on radiofrequency cavities. The operating principle is as follows: passing through the cavity, the beam excites some electromagnetic fields (resonant modes), which are coupled by four feedthroughs to the outside. Signals detected by the signal processing electronics extract the beam position (displacement), the beam intensity and the time of flight of the beam.

 


International Research Conference on High Energy Physics
Submit Your Conference Abstract: https://x-i.me/hepcon
Submit Your Award Nomination: https://x-i.me/hepnom


 

Get Connected Here:
==================

tumblr : https://www.tumblr.com/blog/high-energy-physics 

Comments

Popular posts from this blog

new research in qauntum physics

         VISIT:https: //hep-conferences.sciencefather.com/          N ew research in  qauntum physics.                                                    Alphabet Has a Second, Secretive Quantum Computing Team Recent research in quantum physics includes the development of quantum computers, which are expected to be much more powerful than conventional computers and could revolutionize many aspects of technology, such as artificial intelligence and cryptography. Other research includes the development of quantum sensors for a variety of applications, including medical diagnostics, and the study of quantum entanglement and its potential to enable quantum computing and secure communication. Additionally, research is being conducted into the applications of quantum mechanics in materials science, such as unde...

Freezing light? Italian scientists froze fastest thing in universe, here’s how

In a rare occurrence, physics made it possible to control the fastest travelling element - light. Italian scientists have managed to freeze the light, as per reports. A recent study published in a British weekly journal reportedly revealed that light can exhibit ‘ supersolid behavior ’ a unique state of matter that flows without friction while retaining a solid-like structure. The research, led by Antonio Gianfate from CNR Nanotec and Davide Nigro from the University of Pavia, marks a significant step in understanding supersolidity in light. The scientists described their findings as “just the beginning” of this exploration, as per reports. In what can be termed as ‘manipulating photons under controlled quantum conditions ’, the scientists demonstrated that light, too, can exhibit this behaviour. (A photon is a bundle of electromagnetic energy which is massless, and travel at the speed of light) How did scientists freeze light? As we know, freezing involves lowering a liquid’s tempera...

Physicists observe a new form of magnetism for the first time

MIT physicists have demonstrated a new form of magnetism that could one day be harnessed to build faster, denser, and less power-hungry " spintronic " memory chips. The new magnetic state is a mash-up of two main forms of magnetism: the ferromagnetism of everyday fridge magnets and compass needles, and antiferromagnetism, in which materials have magnetic properties at the microscale yet are not macroscopically magnetized. Now, the MIT team has demonstrated a new form of magnetism , termed "p-wave magnetism." Physicists have long observed that electrons of atoms in regular ferromagnets share the same orientation of "spin," like so many tiny compasses pointing in the same direction. This spin alignment generates a magnetic field, which gives a ferromagnet its inherent magnetism. Electrons belonging to magnetic atoms in an antiferromagnet also have spin, although these spins alternate, with electrons orbiting neighboring atoms aligning their spins antiparalle...