Skip to main content

Breakthrough theory links Einstein’s relativity and quantum mechanics


For over 100 years, two theories have shaped our understanding of the universe: quantum mechanics and Einstein’s general relativity.




For over 100 years, two theories have shaped our understanding of the universe: quantum mechanics and Einstein’s general relativity. One explains the tiny world of particles; the other describes gravity and the fabric of space. But despite their individual success, bringing them together has remained one of science’s greatest unsolved problems.

Now, a team of researchers at University College London has introduced a bold new idea. Rather than tweaking Einstein’s theory to fit into quantum rules, they suggest flipping the script. Their model, called a “postquantum theory of classical gravity,” aims to rethink the deep link between gravity and the quantum world.

Quantum mechanics thrives on probabilities, uncertainty, and the strange behavior of subatomic particles. It’s helped explain the structure of atoms and power modern technology. Meanwhile, general relativity offers a grand view of the universe, where planets and stars bend spacetime and create what we feel as gravity.

But these two worldviews clash at the deepest levels. When scientists try to combine them, the math breaks down. Equations become inconsistent. Models collapse. Despite decades of effort, no unified framework has fully solved the puzzle.

Divide Between Quantum Mechanics and Relativity

What makes the UCL proposal stand out is its refusal to force gravity into a quantum mold. Instead, it explores how classical gravity might interact with quantum systems in entirely new ways. This shift opens a door to theories that haven’t been fully explored before.

“Physicists have often assumed that Einstein’s theory must be modified,” the researchers noted. “But what if the problem isn’t gravity at all? What if it’s the quantum part that needs rethinking?” This provocative question lies at the heart of their approach.

If proven, their work could transform how we view the universe. It offers a new path one that doesn’t aim to crush gravity into quantum form, but instead lets each theory play by its own rules. That simple yet radical idea could help solve one of the most stubborn mysteries in physics.

Website: International Research Awards on High Energy Physics and Computational Science.


#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link :hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: physicsqueries@sciencefather.com

Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA
Tumblr : https://www.tumblr.com/blog/hepcs

Comments

Popular posts from this blog

Physicists observe a new form of magnetism for the first time

MIT physicists have demonstrated a new form of magnetism that could one day be harnessed to build faster, denser, and less power-hungry " spintronic " memory chips. The new magnetic state is a mash-up of two main forms of magnetism: the ferromagnetism of everyday fridge magnets and compass needles, and antiferromagnetism, in which materials have magnetic properties at the microscale yet are not macroscopically magnetized. Now, the MIT team has demonstrated a new form of magnetism , termed "p-wave magnetism." Physicists have long observed that electrons of atoms in regular ferromagnets share the same orientation of "spin," like so many tiny compasses pointing in the same direction. This spin alignment generates a magnetic field, which gives a ferromagnet its inherent magnetism. Electrons belonging to magnetic atoms in an antiferromagnet also have spin, although these spins alternate, with electrons orbiting neighboring atoms aligning their spins antiparalle...

new research in qauntum physics

         VISIT:https: //hep-conferences.sciencefather.com/          N ew research in  qauntum physics.                                                    Alphabet Has a Second, Secretive Quantum Computing Team Recent research in quantum physics includes the development of quantum computers, which are expected to be much more powerful than conventional computers and could revolutionize many aspects of technology, such as artificial intelligence and cryptography. Other research includes the development of quantum sensors for a variety of applications, including medical diagnostics, and the study of quantum entanglement and its potential to enable quantum computing and secure communication. Additionally, research is being conducted into the applications of quantum mechanics in materials science, such as unde...

Freezing light? Italian scientists froze fastest thing in universe, here’s how

In a rare occurrence, physics made it possible to control the fastest travelling element - light. Italian scientists have managed to freeze the light, as per reports. A recent study published in a British weekly journal reportedly revealed that light can exhibit ‘ supersolid behavior ’ a unique state of matter that flows without friction while retaining a solid-like structure. The research, led by Antonio Gianfate from CNR Nanotec and Davide Nigro from the University of Pavia, marks a significant step in understanding supersolidity in light. The scientists described their findings as “just the beginning” of this exploration, as per reports. In what can be termed as ‘manipulating photons under controlled quantum conditions ’, the scientists demonstrated that light, too, can exhibit this behaviour. (A photon is a bundle of electromagnetic energy which is massless, and travel at the speed of light) How did scientists freeze light? As we know, freezing involves lowering a liquid’s tempera...