Wednesday, February 19, 2025

‘Unconventional’ nickel superconductor excites physicists


Compounds called nickelates can conduct electricity without resistance well above absolute zero and at ambient pressure.



A new family of superconductors is exciting physicists. Compounds containing nickel have been shown to carry electricity without resistance at the relatively high temperature of 45 kelvin (–228 °C) and without being squeezed under pressure.

Physicists at the Southern University of Science and Technology (Sustech) in Shenzhen, China, observed the major hallmarks of superconductivity in a thin film of crystals of nickel oxide, which they grew in the laboratory. They published their work in Nature on 17 February.

“There’s a huge hope that we could eventually raise the critical temperature and make [such materials] more useful for applications,” says Dafeng Li, a physicist at the City University of Hong Kong.

Nickelates now join two groups of ceramics  copper-based cuprates and iron-based pnictides  as ‘unconventional superconductors’ that operate at room pressure and temperatures as high as 150K (–123 °C). This new data point could help physicists to finally explain how high-temperature superconductors work, and ultimately to design materials that operate under ambient conditions. This would make technologies, such as magnetic resonance imaging, radically cheaper and more efficient.

How unconventional superconductors operate at warmer temperatures remains largely a mystery, whereas the mechanism behind how some metals can carry electricity without resistance at colder temperatures, or extreme pressures, has been understood since 1957.

The ability of the Sustech researchers to precisely engineer the material’s properties is huge boon in trying to use nickelates to unravel the theory behind unconventional superconductivity, says Lilia Boeri, a physicist at the Sapienza University of Rome. “The idea that you have a system that you can sort of tune experimentally, is something quite exciting.”

Raising temperatures


Excitement in nickelates has been growing since 2019 when Li and his colleagues found hints that compounds containing nickel behaved as superconductors, albeit at cold temperatures. These materials’ structural similarity to cuprates raised hopes that nickelates could be coaxed to conduct at higher temperatures. A separate group demonstrated this in 2023, but the materials were under high pressure.

In December, researchers at Stanford University in California saw the first signs of nickelate superconductivity under ambient pressure. The researchers went further in latest study, showing that the nickelate crystals lost resistance at a critical temperature and expelled magnetic fields.

Nickelates have a way to go before their critical temperature at which superconductivity kicks in matches the cuprates. Raising this is “a priority”, says Zhuoyu Chen, a physicist at Sustech and study co-author. The team is trying various tricks to tweak the way the material is grown and its precise composition, he says.

Website: International Conference on High Energy Physics and Computational Science.


#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link :hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: physicsqueries@sciencefather.com

Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA

No comments:

Post a Comment

Neither electric nor gasoline – this proton engine was predicted by Einstein and defies the laws of physics

Science never stops and now it has made a surprising leap: the proton engine that Albert Einstein predicted decades ago has finally material...