Skip to main content

Quantum simulation breakthrough will lead to 'discoveries impossible in today's fastest supercomputers,' Google scientists claim

By combining digital and analog quantum simulation into a new hybrid approach, scientists have already started to make fresh scientific discoveries using quantum computers.




Scientists at Google have revealed a new method of "quantum simulation" that uses computing power to mimic the behavior of a powerful quantum system. This approach, they argue, could lead to quantum computers that can overtake supercomputers within five years and lead to breakthroughs in drug discovery and battery development.

Quantum simulation is a process in which computers simulate physical processes and large quantum systems, such as complex molecules. Essentially, engineers simulate physical processes that are dominated by the effects of quantum physics.

But this is difficult to do with classical computers because you have to model every particle's interaction with every other particle. Because subatomic particles have a probability of being in multiple states at once and can be entangled with each other, the complexity of these calculations skyrockets quickly as you scale the number of particles involved.

Instead, scientists are turning to quantum computers, whose behavior is already governed by the laws of quantum mechanics, to solve the problems. Because quantum physics is built into the way these systems work. If the qubits are entangled or linked together the right way, they can mimic bigger quantum systems without having to explicitly calculate every step in the evolution of the system.

That is where "quantum simulation" comes into play. There are two types of quantum simulation. Digital simulation lets researchers selectively pivot between quantum states by entangling and disentangling different qubit pairings (two entangled qubits) in series. Analog simulation, meanwhile, is much faster. This involves entangling all the qubits across a system at once  but since qubits can be error-prone, this raises the risk that the output of the simulation becomes meaningless noise.

Simulation theory


This "hybrid" approach begins with a digital simulation layer, where scientists use the flexibility of the system to prepare the initial quantum states of each qubit pair choosing the most pertinent position to start from. Next, the process switches to analog simulation, which can evolve toward the specific quantum states the scientists want to study.

Finally, the process switches back to a digital simulation to fine-tune and probe the quantum states to solve the most interesting problems in the physics being simulated.

The new research means that quantum computers will likely outperform conventional supercomputers in practical settings within the next five years, Hartmut Neven, the founder and lead of Google Quantum AI, said in an emailed statement. The time estimates vary greatly, with some suggesting this may be as far away as 20 years or achievable in the next couple.

Scientists have already demonstrated that Google's quantum computing chips, including Sycamore and the newly released Willow, can outperform the most powerful supercomputers  but so far only in benchmarking. To achieve supremacy in a practical scenario, the scientists said they must make further improvements in calibration and control accuracy, as well as improving the hardware. They also need to identify problems that both can be solved by quantum simulation and are too complex to address using classical computers.

However, the new hybrid research enables today's quantum computers to boost the capabilities of the fastest supercomputers. And this hybrid approach is already being harnessed to make new scientific discoveries, which the Google scientists achieved in testing their new approach. For example, in the behavior of magnets, the Google scientists addressed questions on how a magnet behaves when it's cooled to extremely low temperatures, and how energy flows from a hot to a cold part.

The hybrid approach was also used to show that the Kibble-Zurek mechanism (KZM)  a widely regarded model that predicts where defects form in a material did not always hold true. Instead, the new hybrid simulation revealed entirely new physics. This is an example of the kind of discoveries that the hybrid approach quantum simulation can address, the scientists said.

Website: International Conference on High Energy Physics and Computational Science.


#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link :hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: physicsqueries@sciencefather.com

Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA

Comments

Popular posts from this blog

Freezing light? Italian scientists froze fastest thing in universe, here’s how

In a rare occurrence, physics made it possible to control the fastest travelling element - light. Italian scientists have managed to freeze the light, as per reports. A recent study published in a British weekly journal reportedly revealed that light can exhibit ‘ supersolid behavior ’ a unique state of matter that flows without friction while retaining a solid-like structure. The research, led by Antonio Gianfate from CNR Nanotec and Davide Nigro from the University of Pavia, marks a significant step in understanding supersolidity in light. The scientists described their findings as “just the beginning” of this exploration, as per reports. In what can be termed as ‘manipulating photons under controlled quantum conditions ’, the scientists demonstrated that light, too, can exhibit this behaviour. (A photon is a bundle of electromagnetic energy which is massless, and travel at the speed of light) How did scientists freeze light? As we know, freezing involves lowering a liquid’s tempera...

new research in qauntum physics

         VISIT:https: //hep-conferences.sciencefather.com/          N ew research in  qauntum physics.                                                    Alphabet Has a Second, Secretive Quantum Computing Team Recent research in quantum physics includes the development of quantum computers, which are expected to be much more powerful than conventional computers and could revolutionize many aspects of technology, such as artificial intelligence and cryptography. Other research includes the development of quantum sensors for a variety of applications, including medical diagnostics, and the study of quantum entanglement and its potential to enable quantum computing and secure communication. Additionally, research is being conducted into the applications of quantum mechanics in materials science, such as unde...

Physicists observe a new form of magnetism for the first time

MIT physicists have demonstrated a new form of magnetism that could one day be harnessed to build faster, denser, and less power-hungry " spintronic " memory chips. The new magnetic state is a mash-up of two main forms of magnetism: the ferromagnetism of everyday fridge magnets and compass needles, and antiferromagnetism, in which materials have magnetic properties at the microscale yet are not macroscopically magnetized. Now, the MIT team has demonstrated a new form of magnetism , termed "p-wave magnetism." Physicists have long observed that electrons of atoms in regular ferromagnets share the same orientation of "spin," like so many tiny compasses pointing in the same direction. This spin alignment generates a magnetic field, which gives a ferromagnet its inherent magnetism. Electrons belonging to magnetic atoms in an antiferromagnet also have spin, although these spins alternate, with electrons orbiting neighboring atoms aligning their spins antiparalle...