Physicists turn to supercomputers to help build a 3D picture of the structures of protons and neutrons.
A team of scientists has made exciting advances in mapping the internal components of hadrons. They employed complex quantum chromodynamics and supercomputer simulations to explore how quarks and gluons interact within protons, aiming to unravel mysteries like the proton’s spin and internal energy distribution.
Unveiling the Parton Landscape
Deep within what we think of as solid matter lies a dynamic and ever-changing landscape. The core components of an atom’s nucleus particles called hadrons, which include protons and neutrons are made up of a turbulent mix of interacting quarks and gluons, collectively referred to as partons.
A team of physicists, known as the HadStruc Collaboration, is working to map these partons and unravel how their interactions give rise to hadrons. Based at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility, the group has been developing a mathematical framework to describe these complex interactions. Their latest research was recently published in the Journal of High Energy Physics.
The HadStruc Collaboration
“The HadStruc Collaboration is a group based out of the Jefferson Lab Theory Center and some of the nearby universities,” said HadStruc member Joseph Karpie, a postdoctoral researcher in Jefferson Lab’s Center for Theoretical and Computational Physics. “We have some people at William & Mary and Old Dominion University.”
Other collaboration members who are co-authors on the paper are Jefferson Lab scientists Robert Edwards, Colin Egerer, Eloy Romero and David Richards. The William & Mary Department of Physics is represented by Hervé Dutrieux, Christopher Monahan and Kostas Orginos, who also has a joint position at Jefferson Lab. Anatoly Radyushkin is also a Jefferson Lab joint faculty member affiliated with Old Dominion University, while Savvas Zafeiropoulos is at Université de Toulon in France.
Quantum Forces and Proton Structure
The components of hadrons, called partons, are bound together by the strong interaction, one of the four fundamental forces of nature, along with gravity, electromagnetism and the weak force, which is observed in particle decay.
Karpie explained that the members of the HadStruc Collaboration, like many theoretical physicists worldwide, are trying to determine where and how the quarks and gluons are distributed within the proton. The group uses a mathematical approach known as lattice quantum chromodynamics (QCD) to calculate how the proton is constructed.
Dutrieux, a post-doctoral researcher at William & Mary, explained that the group’s paper outlines a three-dimensional approach to understanding the hadronic structure through the QCD lens. This approach was then carried out via supercomputer calculations.
The 3D concept is based on the notion of generalized parton distributions (GPDs). GPDs offer theoretical advantages over the structures as visualized through one-dimensional parton distribution functions (PDFs), an older QCD approach.
Understanding Proton Spin and Energy
“Well, the GPD is much better in the sense that it allows you to elucidate one of the big questions we have about the proton, which is how its spin arises,” Dutrieux said. “The one-dimensional PDF gives you a very, very limited picture about that.”
He explained that the proton consists in a first approximation of two up quarks and one down quark known as valence quarks. The valence quarks are mediated by a variable roster of gluons spawned from strong force interactions, which act to glue the quarks together. These gluons, as well as pairs of quarks-antiquarks usually denoted as the sea of quarks-antiquarks when distinguishing them from the valence quarks are continually being created and dissolving back into the strong force.
One of the stunning realizations on the proton’s spin came in 1987, when experimental measurements demonstrated that the spin of quarks contributes to less than half of the overall spin of the proton. In fact, a lot of the proton’s spin could arise from the gluon spin and the motion of partons in the form of orbital angular momentum. A lot of experimental and computational effort is still necessary to clarify this situation.
“GPDs represent a promising opportunity to access this orbital angular part and produce a firmly grounded explanation of how the proton’s spin is distributed among quarks and gluons,” Dutrieux noted.
He went on to say that another aspect that the collaboration hopes to address through GPDs is a concept known as the energy momentum tensor.
“The energy momentum tensor really tells you how energy and momentum are distributed inside your proton,” Dutrieux said. “They tell you how your proton interacts with gravity as well. But right now, we’re just studying its distribution of matter.”
New Frontiers in Hadron Research
Karpie pointed out that the HadStruc Collaboration’s GPD theory is already being examined in experiments at high-energy facilities worldwide. Two processes for examining hadron structure through GPDs, deeply virtual Compton scattering (DVCS) and deeply virtual meson production (DVMP), are being conducted at Jefferson Lab and other facilities.
Karpie and Dutrieux expect the group’s work to be on the slate of experiments at the Electron-Ion Collider (EIC), a particle accelerator being built at DOE’s Brookhaven National Laboratory on Long Island. Jefferson Lab has partnered with Brookhaven National Laboratory on the project.
It’s expected that the EIC will be powerful enough to probe hadrons beyond the point at which today’s instruments start to lose signal, but the exploration of the structure of how hadrons are assembled won’t be waiting for the EIC to come online.
“We have some new experiments at Jefferson Lab. They’re collecting data now and giving us information for comparing to our calculations,” Karpie said. “And then we hope to be able to build up and get even better information at the EIC. It is all part of this progress chain.”
Website: International Conference on High Energy Physics and Computational Science.
#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing
Visit Our Website : hep-conferences.sciencefather.com
Nomination Link :hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: physicsqueries@sciencefather.com
Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA
No comments:
Post a Comment