Thursday, January 2, 2025

Quantum Leap: Scientists Successfully Control New Energy Range States




Scientists have controlled hybrid quantum states in helium using intense ultraviolet lasers, opening new paths in quantum research.

An international team of scientists, led by Dr. Lukas Bruder, a junior research group leader at the University of Freiburg’s Institute of Physics, has successfully created and controlled hybrid electron-photon quantum states in helium atoms.

The team accomplished this by generating specially designed, highly intense extreme ultraviolet light pulses using the FERMI free electron laser in Trieste, Italy. By employing an innovative laser pulse-shaping technique, they were able to precisely control these hybrid quantum states. The groundbreaking findings have been published in Nature.

Strong light fields can create new quantum states

As long as electrons are bound to an atom, their energy can only be of certain values. These energy values depend primarily on the atoms themselves. However, if an atom is in the beam of a very intense laser, the energy levels shift.

Hybrid electron-photon states are created, known as ‘dressed states’. These occur at laser intensities in the range of ten to a hundred trillion watts per square centimeter. In order to be able to produce and control these special quantum states, laser pulses are necessary that achieve such intensities within a short time window of only a few trillionths of a second.

Free electron laser for producing laser radiation in the extreme ultraviolet range

For their experiment, the scientists used the FERMI free electron laser which allows generation of laser light in the extreme ultraviolet spectral range at very high intensity. This extreme ultraviolet radiation has a wavelength of less than 100 nanometers, which is necessary to manipulate the electron states in helium atoms.

In order to control the electron-photon states, the researchers used laser pulses that dispersed or contracted depending on the scenario. To this end, they adjusted the time lag of the different color components of the laser radiation. The properties of the laser pulses were controlled using a ‘seed laser pulse’, which preconditioned the emission of the free electron laser.

“Our research enabled us for the first time to directly control these transient quantum states in a helium atom,” says Bruder. “The technique we’ve developed opens up a new field of research: this includes new opportunities for making experiments with free electron lasers more efficient and selective or for gaining new insights into fundamental quantum systems, which are not accessible with visible light. In particular, it may now be possible to develop methods to study or even control chemical reactions with atomic precision.”

Website: International Conference on High Energy Physics and Computational Science.

#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link :hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: physicsqueries@sciencefather.com

Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA

No comments:

Post a Comment

Magnetism Redefined: The Nanoscale Discovery Powering Future Technology

Researchers have discovered unseen interactions that could impact the future of electronics. University of Missouri researchers have discove...