Skip to main content

Scientists Solve a 40-Year Quantum Mystery That Could Change Electronics Forever




Quantum chaos, previously theoretical, has been observed experimentally, validating a 40-year-old theory about electrons forming patterns in confined spaces.

Using advanced imaging techniques on graphene, researchers confirmed “quantum scars,” where electrons follow unique closed orbits. These findings could revolutionize electronics by enabling efficient, low-power transistors and paving the way for novel quantum control methods. This discovery offers insights into chaotic quantum systems, bridging a gap between classical and quantum physics.

Patterns in Chaos Revealed in Quantum Space

Where can patterns emerge from chaos? This question has been answered in the incredibly tiny quantum realm by an international research team co-led by UC Santa Cruz physicist Jairo Velasco, Jr. In a study published on November 27 in Nature, the researchers confirmed a 40-year-old theory suggesting that electrons confined within quantum spaces follow predictable paths rather than creating a random jumble of trajectories.

Electrons are unique because they exhibit both particle and wave-like properties. Unlike a ball rolling predictably, their behavior is often counterintuitive. Under specific conditions, the wave-like nature of electrons can cause interference, concentrating their movement into distinct patterns. Physicists refer to these common paths as “unique closed orbits.”

Advanced Imaging Techniques in Quantum Research

Achieving this in Velasco’s lab required an intricate combination of advanced imaging techniques and precise control over electron behavior within graphene, a material widely used in research because its unique properties and two-dimensional structure make it ideal for observing quantum effects. In their experiment, Velasco’s team utilized the finely tipped probe of a scanning tunneling microscope to first create a trap for electrons, and then hover close to a graphene surface to detect electron movements without physically disturbing them.

The benefit of electrons following closed orbits within a confined space is that the subatomic particle’s property would be better preserved as it moves from one point to another, according to Velasco. He said this has vast implications for everyday electronics, explaining how information encoded in an electron’s properties could be transferred without loss, conceivably resulting in lower-power, highly efficient transistors.

“One of the most promising aspects of this discovery is its potential use in information processing,” Velasco said. “By slightly disturbing, or ‘nudging’ these orbits, electrons could travel predictably across a device, carrying information from one end to the other.”

Quantum Scars Make Their Mark

In physics, these unique electron orbits are known as “quantum scars.” This was first explained in a 1984 theoretical study by Harvard University physicist Eric Heller, who used computer simulations to reveal that confined electrons would move along high-density orbits if reinforced by their wave motions interfering with each other.

Quantum scarring is not a curiosity. But rather, it is a window onto the strange quantum world,” said Heller, also a co-author on the paper. “Scarring is a localization around orbits that come back on themselves. These returns have no long-term consequence in our normal classical world they are soon forgotten. But they are remembered forever in the quantum world.”

Classical Chaos vs. Quantum Chaos

Velasco’s team employs a visual model often referred to as a “billiard” to illustrate the classical mechanics of linear versus chaotic systems. A billiard is a bounded area that reveals how particles inside move, and a common shape used in physics is called a “stadium,” where the ends are curved and the edges straight. In classical chaos, a particle would bounce around randomly and unpredictably eventually covering the entire surface.

In this experiment, the team created a stadium billiard on atom-thin graphene that measured roughly 400 nanometers in length. Then, with the scanning tunneling microscope, they were able to observe quantum chaos in action: finally seeing with their own eyes the pattern of electron orbits within the stadium billiard they created in Velasco’s lab.

“I am very excited we successfully imaged quantum scars in a real quantum system,” said first and co-corresponding author Zhehao Ge, a UC Santa Cruz graduate student at the time of this study’s completion. “Hopefully, these studies will help us gain a deeper understanding of chaotic quantum systems.”
 
Website: International Research Awards on High Energy Physics and Computational Science.

#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Comments

Popular posts from this blog

new research in qauntum physics

         VISIT:https: //hep-conferences.sciencefather.com/          N ew research in  qauntum physics.                                                    Alphabet Has a Second, Secretive Quantum Computing Team Recent research in quantum physics includes the development of quantum computers, which are expected to be much more powerful than conventional computers and could revolutionize many aspects of technology, such as artificial intelligence and cryptography. Other research includes the development of quantum sensors for a variety of applications, including medical diagnostics, and the study of quantum entanglement and its potential to enable quantum computing and secure communication. Additionally, research is being conducted into the applications of quantum mechanics in materials science, such as unde...

Physicists observe a new form of magnetism for the first time

MIT physicists have demonstrated a new form of magnetism that could one day be harnessed to build faster, denser, and less power-hungry " spintronic " memory chips. The new magnetic state is a mash-up of two main forms of magnetism: the ferromagnetism of everyday fridge magnets and compass needles, and antiferromagnetism, in which materials have magnetic properties at the microscale yet are not macroscopically magnetized. Now, the MIT team has demonstrated a new form of magnetism , termed "p-wave magnetism." Physicists have long observed that electrons of atoms in regular ferromagnets share the same orientation of "spin," like so many tiny compasses pointing in the same direction. This spin alignment generates a magnetic field, which gives a ferromagnet its inherent magnetism. Electrons belonging to magnetic atoms in an antiferromagnet also have spin, although these spins alternate, with electrons orbiting neighboring atoms aligning their spins antiparalle...

Freezing light? Italian scientists froze fastest thing in universe, here’s how

In a rare occurrence, physics made it possible to control the fastest travelling element - light. Italian scientists have managed to freeze the light, as per reports. A recent study published in a British weekly journal reportedly revealed that light can exhibit ‘ supersolid behavior ’ a unique state of matter that flows without friction while retaining a solid-like structure. The research, led by Antonio Gianfate from CNR Nanotec and Davide Nigro from the University of Pavia, marks a significant step in understanding supersolidity in light. The scientists described their findings as “just the beginning” of this exploration, as per reports. In what can be termed as ‘manipulating photons under controlled quantum conditions ’, the scientists demonstrated that light, too, can exhibit this behaviour. (A photon is a bundle of electromagnetic energy which is massless, and travel at the speed of light) How did scientists freeze light? As we know, freezing involves lowering a liquid’s tempera...