Skip to main content

Quantum battery that uses spin degrees of freedom of particles to store energy developed

A research team at the University of Genova has developed the spin quantum battery, an energy storage system that uses the spin degrees of freedom of particles.




The battery utilizes the spin properties of particles for energy storage and release, with a distinctive charging method that eliminates the need for an external field.

Quantum many-body theory and non-equilibrium physics are longstanding research areas within the quantum condensed matter theory group led by Maura Sassetti at the University of Genova, according to senior author Dario Ferraro.

Researchers merge interests to develop spin quantum battery

Ferraro further explained that his work focuses on quantum batteries miniaturized devices designed to store energy using quantum mechanical principles. He saw an opportunity to advance this research through Riccardo Grazi’s master’s thesis.

Together with colleagues at the University of Genova, they extended their investigation of spin quantum batteries to a regime involving a significantly larger number of elements. This advancement overcame limitations previously faced with conventional approaches to designing such batteries.

The Italian scientist further explained that the quantum battery works by intercalating two collections of ½-spins, which are the simplest possible quantum systems. By adjusting the interaction between the elements of the two chains, such as shifting one relative to the other, energy can be trapped in the quantum battery in a stable manner.

The developed protocol offers several advantages over existing spin quantum battery designs, particularly by enabling the battery to charge without relying on an external field. Furthermore, the main results of their work include the development of an alternative charging protocol for spin quantum batteries, which relies on time-dependent modulation of one of the system’s internal parameters, as well as the ability to study this protocol in a system with a very large number of elements.

Quantum battery research could lead to neutral atom-based devices

Ferraro and his colleagues suggest this development could open new possibilities in quantum battery research, including the potential to use systems like neutral atoms, which are important in the development of large-scale quantum computers.

The team tested the new spin quantum battery design and charging protocol in a series of initial experiments. The results were highly promising, demonstrating the robustness of the proposed charging method, which does not require precise accuracy to manipulate the battery in real-time.

This study could lead to the development of more efficient and stable solid-state quantum batteries. Building on their previous work, the team are now exploring how factors like temperature and long-range interactions affect the charging process of various quantum batteries, including the Ising model. As Ferrero pointed out, their main goal is to create a general framework that can assess the suitability of different systems for use as quantum batteries.

“We are currently exploring how factors like temperature and long-range interactions affect the charging process of a large class of quantum batteries, which includes the Ising model already briefly discussed at the end of our paper.” the scientist noted.

Website: International Research Awards on High Energy Physics and Computational Science.

#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Comments

Popular posts from this blog

Freezing light? Italian scientists froze fastest thing in universe, here’s how

In a rare occurrence, physics made it possible to control the fastest travelling element - light. Italian scientists have managed to freeze the light, as per reports. A recent study published in a British weekly journal reportedly revealed that light can exhibit ‘ supersolid behavior ’ a unique state of matter that flows without friction while retaining a solid-like structure. The research, led by Antonio Gianfate from CNR Nanotec and Davide Nigro from the University of Pavia, marks a significant step in understanding supersolidity in light. The scientists described their findings as “just the beginning” of this exploration, as per reports. In what can be termed as ‘manipulating photons under controlled quantum conditions ’, the scientists demonstrated that light, too, can exhibit this behaviour. (A photon is a bundle of electromagnetic energy which is massless, and travel at the speed of light) How did scientists freeze light? As we know, freezing involves lowering a liquid’s tempera...

new research in qauntum physics

         VISIT:https: //hep-conferences.sciencefather.com/          N ew research in  qauntum physics.                                                    Alphabet Has a Second, Secretive Quantum Computing Team Recent research in quantum physics includes the development of quantum computers, which are expected to be much more powerful than conventional computers and could revolutionize many aspects of technology, such as artificial intelligence and cryptography. Other research includes the development of quantum sensors for a variety of applications, including medical diagnostics, and the study of quantum entanglement and its potential to enable quantum computing and secure communication. Additionally, research is being conducted into the applications of quantum mechanics in materials science, such as unde...

Superconductivity Mystery: Scientists Challenge a 50-Year Theory of Electron Behavior

A recent study found that the Hubbard model failed to accurately predict the behavior of a simplified one-dimensional cuprate system. According to scientists at SLAC, this suggests the model is unlikely to fully account for high-temperature superconductivity in two-dimensional cuprates. Superconductivity, the phenomenon where certain materials can conduct electricity without any energy loss, holds great potential for revolutionary technologies, from ultra-efficient power grids to cutting-edge quantum devices . A recent study published in Physical Review Letters by researchers at the Stanford Institute for Materials and Energy Sciences (SIMES) at the Department of Energy’s SLAC National Accelerator Laboratory offers new insights into one of the field’s most persistent puzzles: high-temperature superconductivity in cuprates. Building on findings from an earlier SLAC study, the researchers present additional evidence that the Hubbard model the most widely used theoretical framework for d...