Skip to main content

Quantum Breakthrough Could Propel Superconductors to the Next Level





Researchers uncover novel magnetic and electronic properties in thin films of kagome magnets.

Physicists at Rice University and their collaborators have made a discovery that sheds new light on magnetism and electronic interactions in advanced materials, with the potential to transform technologies like quantum computing and high-temperature superconductors.

Led by Zheng Ren and Ming Yi, the research team’s study on iron-tin (FeSn) thin films reshapes scientific understanding of kagome magnets  materials named after an ancient basket-weaving pattern and structured in a unique, latticelike design that can create unusual magnetic and electronic behaviors due to the quantum destructive interference of the electronic wave function.

The findings, published in Nature Communications, reveal that FeSn’s magnetic properties arise from localized electrons, not the mobile electrons scientists previously thought. This discovery challenges existing theories about magnetism in kagome metals in which itinerant electrons were assumed to drive magnetic behavior. By providing a new perspective on magnetism, the research team’s work could guide the development of materials with tailored properties for advanced tech applications such as quantum computing and superconductors.

Impact on Quantum Materials Research

“This work is expected to stimulate further experimental and theoretical studies on the emergent properties of quantum materials, deepening our understanding of these enigmatic materials and their potential real-world applications,” said Yi, an associate professor of physics and astronomy and Rice Academy Senior Fellow.




Using an advanced technique that combines molecular beam epitaxy and angle-resolved photoemission spectroscopy, the researchers created high-quality FeSn thin films and analyzed their electronic structure. They found that even at elevated temperatures, the kagome flat bands remained split, an indicator that localized electrons drive magnetism in the material. This electron correlation effect adds a new layer of complexity to understanding how electron behavior influences magnetic properties in kagome magnets.

Selective Band Renormalization and Electron Correlations

The study also revealed that some electron orbitals showed stronger interactions than others, a phenomenon known as selective band renormalization previously observed in iron-based superconductors, offering a fresh perspective on how electron interactions influence the behavior of kagome magnets.

“Our study highlights the complex interplay between magnetism and electron correlations in kagome magnets and suggests that these effects are non-negligible in shaping their overall behavior,” said Ren, a Rice Academy Junior Fellow.

Beyond advancing the understanding of FeSn, the research has broader implications for materials with similar properties. Insights into flat bands and electron correlations could influence the development of new technologies such as high-temperature superconductors and topological quantum computation, where the interplay of magnetism and topological flat bands generates quantum states that can be used as quantum logic gates.

Website: International Research Awards on High Energy Physics and Computational Science.

#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link : https://hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
Contact us : contact@sciencefather.com


Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA

Comments

Popular posts from this blog

Physicists observe a new form of magnetism for the first time

MIT physicists have demonstrated a new form of magnetism that could one day be harnessed to build faster, denser, and less power-hungry " spintronic " memory chips. The new magnetic state is a mash-up of two main forms of magnetism: the ferromagnetism of everyday fridge magnets and compass needles, and antiferromagnetism, in which materials have magnetic properties at the microscale yet are not macroscopically magnetized. Now, the MIT team has demonstrated a new form of magnetism , termed "p-wave magnetism." Physicists have long observed that electrons of atoms in regular ferromagnets share the same orientation of "spin," like so many tiny compasses pointing in the same direction. This spin alignment generates a magnetic field, which gives a ferromagnet its inherent magnetism. Electrons belonging to magnetic atoms in an antiferromagnet also have spin, although these spins alternate, with electrons orbiting neighboring atoms aligning their spins antiparalle...

Green comet to pass Earth, won't be back for another 50,000 years

   visit:  https://hep-conferences.sciencefather.com/ After travelling from the icy reaches of our Solar System it will come closest to the Sun on January 12 and pass nearest to Earth on February 1.   A newly discovered comet could be visible to the naked eye as it shoots past Earth and the Sun in the coming weeks for the first time in 50,000 years, astronomers have said. The comet is called C/2022 E3 (ZTF) after the Zwicky Transient Facility, which first spotted it passing Jupiter in March last year. After travelling from the icy reaches of our Solar System it will come closest to the Sun on January 12 and pass nearest to Earth on February 1. It will be easy to spot with a good pair of binoculars and likely even with the naked eye, provided the sky is not too illuminated by city lights or the Moon. The comet "will be brightest when it is closest to the Earth", Thomas Prince, a physics professor at the California Institute of Technology who works at the Zwicky Transi...

"Explore the Fourth Dimension"

Fourth Dimension   The fourth dimension is a fascinating concept that has captured the imaginations of scientists, mathematicians, and artists for centuries. Unlike our three-dimensional world, which is limited by the linear flow of time, the fourth dimension is a realm of space and time that exists beyond our everyday experience. One way to visualize the fourth dimension is through the use of a hypercube, also known as a tesseract. A hypercube is a cube within a cube, with additional lines and edges connecting the vertices of the two cubes. It's impossible to construct in our three-dimensional world, but it provides a glimpse into what the fourth dimension might look like. Another way to understand the fourth dimension is through the concept of a wormhole, a theoretical passage through space-time that connects two distant points in the universe. A wormhole is like a shortcut through the fabric of space-time, allowing us to travel vast distances in an instant. While there is no de...