Skip to main content

Korean Scientists Achieve Unprecedented Real-Time Capture of Quantum Information





DGIST and UNIST researchers have discovered a new quantum state, the exciton-Floquet synthesis state, enabling real-time quantum information control in two-dimensional semiconductors.

A research team led by Professor Jaedong Lee from the Department of Chemical Physics at DGIST (President Kunwoo Lee) has unveiled a groundbreaking quantum state and an innovative mechanism for extracting and manipulating quantum information through exciton and Floquet states.

Collaborating with Professor Noejung Park from UNIST’s Department of Physics (President Chongrae Park), the team has, for the first time, demonstrated the formation and synthesis process of exciton and Floquet states, which arise from light-matter interactions in two-dimensional semiconductors. This study captures quantum information in real-time as it unfolds through entanglement, offering valuable insights into the exciton formation process in these materials, thereby advancing quantum information technology.

Advantages of Two-Dimensional Semiconductors

Unlike traditional three-dimensional solids, where quantum coherence is challenging to maintain owing to thermal influences, two-dimensional semiconductors feature energy levels for excitons and conduction bands that remain distinct owing to weaker screening effects, thus preserving coherence over extended periods. This distinction makes two-dimensional semiconductors promising for developing quantum information devices. Yet, until now, the coherence and decoherence mechanisms of electrons during exciton formation have been poorly understood.

Through theoretical calculations using time-resolved angular-resolved photoelectron spectroscopy on two-dimensional semiconductor materials, Professor Lee’s team confirmed that exciton formation coincides with the creation of a Floquet state, producing a combined new quantum state. Additionally, they identified the mechanism by which quantum entanglement occurs within this state and proposed a real-time method to extract, unfold, and control quantum information.

Professor Jaedong Lee, of DGIST’s Department of Chemical Physics, commented, “We have discovered a new quantum state, known as the exciton-Floquet synthesis state, and proposed a novel mechanism for quantum entanglement and quantum information extraction. This is anticipated to drive forward quantum information technology research in two-dimensional semiconductors.” UNIST’s Professor Noejung Park added, “This research sets a new paradigm for quantum information technology, including quantum computers, marking an important milestone for its realization.”

Website: International Research Awards on High Energy Physics and Computational Science.

#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Comments

Popular posts from this blog

Freezing light? Italian scientists froze fastest thing in universe, here’s how

In a rare occurrence, physics made it possible to control the fastest travelling element - light. Italian scientists have managed to freeze the light, as per reports. A recent study published in a British weekly journal reportedly revealed that light can exhibit ‘ supersolid behavior ’ a unique state of matter that flows without friction while retaining a solid-like structure. The research, led by Antonio Gianfate from CNR Nanotec and Davide Nigro from the University of Pavia, marks a significant step in understanding supersolidity in light. The scientists described their findings as “just the beginning” of this exploration, as per reports. In what can be termed as ‘manipulating photons under controlled quantum conditions ’, the scientists demonstrated that light, too, can exhibit this behaviour. (A photon is a bundle of electromagnetic energy which is massless, and travel at the speed of light) How did scientists freeze light? As we know, freezing involves lowering a liquid’s tempera...

new research in qauntum physics

         VISIT:https: //hep-conferences.sciencefather.com/          N ew research in  qauntum physics.                                                    Alphabet Has a Second, Secretive Quantum Computing Team Recent research in quantum physics includes the development of quantum computers, which are expected to be much more powerful than conventional computers and could revolutionize many aspects of technology, such as artificial intelligence and cryptography. Other research includes the development of quantum sensors for a variety of applications, including medical diagnostics, and the study of quantum entanglement and its potential to enable quantum computing and secure communication. Additionally, research is being conducted into the applications of quantum mechanics in materials science, such as unde...

Physicists observe a new form of magnetism for the first time

MIT physicists have demonstrated a new form of magnetism that could one day be harnessed to build faster, denser, and less power-hungry " spintronic " memory chips. The new magnetic state is a mash-up of two main forms of magnetism: the ferromagnetism of everyday fridge magnets and compass needles, and antiferromagnetism, in which materials have magnetic properties at the microscale yet are not macroscopically magnetized. Now, the MIT team has demonstrated a new form of magnetism , termed "p-wave magnetism." Physicists have long observed that electrons of atoms in regular ferromagnets share the same orientation of "spin," like so many tiny compasses pointing in the same direction. This spin alignment generates a magnetic field, which gives a ferromagnet its inherent magnetism. Electrons belonging to magnetic atoms in an antiferromagnet also have spin, although these spins alternate, with electrons orbiting neighboring atoms aligning their spins antiparalle...