Skip to main content

CERN’s Bold Quest To Discover New Physics Through Higgs Bosons





Since the launch of the Large Hadron Collider, researchers have been studying Higgs bosons and searching for signs of physics beyond the current model of elementary particles. Scientists working with the ATLAS detector have combined these two goals: their latest analysis has not only deepened our understanding of how Higgs bosons interact with each other but also placed stronger limits on potential “new physics” phenomena.

The Large Hadron Collider (LHC) achieved a major success with the discovery of the Higgs boson, the final missing piece of the Standard Model and a key to understanding the origin of mass in elementary particles. However, despite this breakthrough, researchers have yet to find any evidence of physics beyond the Standard Model, which has been a source of ongoing frustration. Scientists at CERN (the European Organization for Nuclear Research) in Geneva are now working to address this by improving the precision of Higgs boson measurements while actively searching for signs of “new physics.”

A recent study, conducted by CERN’s ATLAS experiment team and published in the Journal of High Energy Physics, exemplifies this dual approach. The team focused on observing events that led to the creation of two Higgs bosons, which then decay into multiple particles of the lepton family, primarily electrons and muons.

Exploring Higgs Boson Pair Production

Producing Higgs boson pairs is theoretically possible within the Standard Model, but it is so rare that scientists have not yet observed it in existing data. Some theoretical models beyond the Standard Model, however, suggest that Higgs boson pairs could be produced more frequently. If scientists can identify instances of Higgs boson pair production with current data, it would confirm the existence of a new, previously unknown class of physical phenomena. Consequently, the ATLAS experiment team has made this rare process the focus of their analysis.

“Experimental studies of the interactions of Higgs bosons with each other encounter a fundamental problem. It is this: in proton collisions at the LHC, Higgs bosons appear so infrequently that so far not a single event of Higgs boson pair production has been detected, which at first glance seems absolutely necessary if we want to look at interactions between these particles. How, then, can we study a phenomenon that has not yet been observed?” asks Dr. Bartlomiej Zabinski, a physicist at the Institute of Physics of the Polish Academy of Sciences (IPJ PAN) who coordinated the international team responsible for this analysis.

The Role of Machine Learning in Particle Physics

Within the Standard Model, increasingly precise predictions can be made about the probabilities of various known processes. A rationale for suggesting unexpected properties of Higgs bosons or the existence of new physics would be a discrepancy between theoretical predictions and actual data from the LHC detectors. Operating solely within the framework of the Standard Model, the physicists in the ATLAS experiment therefore simulated (together with the background) the signals that should appear in the detectors in the event of two Higgs boson phenomena, and then normalized the results according to the expected amount of data coming from their detector. The final step was to compare the values thus obtained with those derived from previous observations. The use of machine learning based on decision trees helped in the search for these rare processes.

“Our analysis of double Higgs boson production events in the final state with multiple leptons complements the studies already carried out on other final states. So far, we have not noticed anything in the data from our detectors that disagrees with the Standard Model. However, this result does not rule out the possibility of the existence of ‘new physics’ phenomena, but only informs us that their possible influence on the production of Higgs boson pairs remains too weak to be seen in the data collected so far,” concludes Dr. Zabinski.

Future Prospects at the LHC

In the coming years, the LHC is to undergo a major upgrade. The intensity of the beams will then increase tenfold, resulting in a significant increase in the number of recorded proton collisions. The limitations imposed by the current analysis on the production and parameters describing the interactions of Higgs bosons allow physicists to hope that perhaps already at the beginning of the next decade, it will be possible to select the first events of double Higgs production from more data and to verify today’s predictions in direct observations of the phenomenon.

Website: International Research Awards on High Energy Physics and Computational Science.

#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing


Comments

Popular posts from this blog

new research in qauntum physics

         VISIT:https: //hep-conferences.sciencefather.com/          N ew research in  qauntum physics.                                                    Alphabet Has a Second, Secretive Quantum Computing Team Recent research in quantum physics includes the development of quantum computers, which are expected to be much more powerful than conventional computers and could revolutionize many aspects of technology, such as artificial intelligence and cryptography. Other research includes the development of quantum sensors for a variety of applications, including medical diagnostics, and the study of quantum entanglement and its potential to enable quantum computing and secure communication. Additionally, research is being conducted into the applications of quantum mechanics in materials science, such as unde...

Physicists observe a new form of magnetism for the first time

MIT physicists have demonstrated a new form of magnetism that could one day be harnessed to build faster, denser, and less power-hungry " spintronic " memory chips. The new magnetic state is a mash-up of two main forms of magnetism: the ferromagnetism of everyday fridge magnets and compass needles, and antiferromagnetism, in which materials have magnetic properties at the microscale yet are not macroscopically magnetized. Now, the MIT team has demonstrated a new form of magnetism , termed "p-wave magnetism." Physicists have long observed that electrons of atoms in regular ferromagnets share the same orientation of "spin," like so many tiny compasses pointing in the same direction. This spin alignment generates a magnetic field, which gives a ferromagnet its inherent magnetism. Electrons belonging to magnetic atoms in an antiferromagnet also have spin, although these spins alternate, with electrons orbiting neighboring atoms aligning their spins antiparalle...

Freezing light? Italian scientists froze fastest thing in universe, here’s how

In a rare occurrence, physics made it possible to control the fastest travelling element - light. Italian scientists have managed to freeze the light, as per reports. A recent study published in a British weekly journal reportedly revealed that light can exhibit ‘ supersolid behavior ’ a unique state of matter that flows without friction while retaining a solid-like structure. The research, led by Antonio Gianfate from CNR Nanotec and Davide Nigro from the University of Pavia, marks a significant step in understanding supersolidity in light. The scientists described their findings as “just the beginning” of this exploration, as per reports. In what can be termed as ‘manipulating photons under controlled quantum conditions ’, the scientists demonstrated that light, too, can exhibit this behaviour. (A photon is a bundle of electromagnetic energy which is massless, and travel at the speed of light) How did scientists freeze light? As we know, freezing involves lowering a liquid’s tempera...