Skip to main content

Quantum Computing Transformed by Breakthrough Photonic Technology





A recent quantum computing breakthrough has enhanced the scalability and efficiency of quantum computations, moving closer to practical quantum computing advancements.

A new study published in Nature Photonics by Prof. Yaron Bromberg and Dr. Ohad Lib from the Racah Institute of Physics at the Hebrew University of Jerusalem has made significant strides in advancing quantum computing through their research on photonic-measurement-based quantum computation. This method has the potential to overcome some of the significant challenges in quantum computation, offering a scalable and resource-efficient solution by utilizing high-dimensional spatial encoding to generate large cluster states.

Quantum computers currently encounter a major bottleneck in producing the large cluster states essential for computations. The conventional approach results in exponentially decreasing detection probabilities as the number of photons increases. Prof. Bromberg and Dr. Lib’s study tackles this problem by encoding multiple qubits within each photon using spatial encoding. This pioneering approach has successfully generated cluster states containing over nine qubits at a frequency of 100 Hz, marking a notable achievement in the field.
Enhancing Quantum Computation Efficiency

Additionally, the researchers demonstrated that this method substantially reduces computation time by enabling instantaneous feedforward between qubits encoded within the same photon. This breakthrough opens the door to more resource-efficient quantum computations, potentially leading to faster, fault-tolerant quantum computers capable of handling complex problems.

Prof. Bromberg commented, “Our results show that using high-dimensional encoding not only overcomes previous scalability barriers but also offers a practical and efficient approach to quantum computing. This represents a major leap forward.”
Future Implications for Quantum Technology

Dr. Lib added, “By tackling both scalability and computation duration issues, we’ve paved a new way forward for measurement-based quantum computation. The future of quantum technology just became a little closer.”

This study marks an important milestone in the ongoing pursuit of realizing the full potential of quantum computing through photonics.


Website: International Research Awards on High Energy Physics and Computational Science.

#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics
#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience
#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing
#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link : hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners :hep-conferences.sciencefather.com/awards-winners/
Contact us : contact@sciencefather.com


Get Connected Here:
==================
Social Media Link
Twitter :x.com/Psciencefather?mx=2
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA

Comments

Popular posts from this blog

Physicists observe a new form of magnetism for the first time

MIT physicists have demonstrated a new form of magnetism that could one day be harnessed to build faster, denser, and less power-hungry " spintronic " memory chips. The new magnetic state is a mash-up of two main forms of magnetism: the ferromagnetism of everyday fridge magnets and compass needles, and antiferromagnetism, in which materials have magnetic properties at the microscale yet are not macroscopically magnetized. Now, the MIT team has demonstrated a new form of magnetism , termed "p-wave magnetism." Physicists have long observed that electrons of atoms in regular ferromagnets share the same orientation of "spin," like so many tiny compasses pointing in the same direction. This spin alignment generates a magnetic field, which gives a ferromagnet its inherent magnetism. Electrons belonging to magnetic atoms in an antiferromagnet also have spin, although these spins alternate, with electrons orbiting neighboring atoms aligning their spins antiparalle...

new research in qauntum physics

         VISIT:https: //hep-conferences.sciencefather.com/          N ew research in  qauntum physics.                                                    Alphabet Has a Second, Secretive Quantum Computing Team Recent research in quantum physics includes the development of quantum computers, which are expected to be much more powerful than conventional computers and could revolutionize many aspects of technology, such as artificial intelligence and cryptography. Other research includes the development of quantum sensors for a variety of applications, including medical diagnostics, and the study of quantum entanglement and its potential to enable quantum computing and secure communication. Additionally, research is being conducted into the applications of quantum mechanics in materials science, such as unde...

Physicists Catch Light in 'Imaginary Time' in Scientific First

For the first time, researchers have seen how light behaves during a mysterious phenomenon called 'imaginary time '. When you shine light through almost any transparent material, the gridlock of electromagnetic fields that make up the atomic alleys and side streets will add a significant amount of time to each photon's commute. This delay can tell physicists a lot about how light scatters, revealing details about the matrix of material the photons must navigate. Yet until now, one trick up the theorist's sleeve for measuring light's journey invoking imaginary time has not been fully understood in practical terms. An experiment conducted by University of Maryland physicists Isabella Giovannelli and Steven Anlage has now revealed precisely what pulses of microwave radiation (a type of light that exists outside the visible spectrum) do while experiencing imaginary time inside a roundabout of cables. Their work also demonstrates how imaginary numbers can describe a ver...