Skip to main content

New quantum computing controls seek to advance efforts by the US and its allies and slow adversaries’ production






The DOC has released an interim final rule that will license export controls for a 38-plus member coalition of ‘like minded countries,’ seemingly attempting to thwart advances by China, Russia and others.

With the US and its allies in a semiconductor arms race, the Biden administration is continuing to push its efforts to keep the technology out of the “wrong hands” with new chip-related export controls.

The US Department of Commerce (DOC) this week released an interim final rule that will enforce License Exception Implemented Export Controls (IEC) for a 38-plus member coalition of “like-minded countries.” There is a 60-day public comment period before the final ruling.

“Aligning our controls on quantum and other advanced technologies makes it significantly more difficult for our adversaries to develop and deploy these technologies in ways that threaten our collective security,” Alan Estevez, under secretary for the Bureau of Industry and Security (BIS), said in a release.

While China is not explicitly named, it’s pretty heavily implied that this applies to that country, although it’s been clear that it has been able to get around such restrictions in the past, including gaining access to highly sought-after Nvidia chips. The DOC release does emphasize, however, that this is part of an ongoing effort to strengthen export controls to “degrade” the military capabilities of Russia and its “enablers,” Iran and Belarus.

Both the Biden and Trump administrations have used export controls to limit access to advanced semiconductor manufacturing equipment, explained James Sanders, senior analyst at TechInsights. “Including quantum computing in the latest set of rules is easiest to understand as an extension of controls limiting access to high-performance chips for artificial intelligence,” he told CIO.


Website: International Research Awards on High Energy Physics and Computational Science.

#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics
#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience
#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing
#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link : hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners :hep-conferences.sciencefather.com/awards-winners/
Contact us : contact@sciencefather.com


Get Connected Here:
==================
Social Media Link
Twitter :x.com/Psciencefather?mx=2
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA

Comments

Popular posts from this blog

Physicists observe a new form of magnetism for the first time

MIT physicists have demonstrated a new form of magnetism that could one day be harnessed to build faster, denser, and less power-hungry " spintronic " memory chips. The new magnetic state is a mash-up of two main forms of magnetism: the ferromagnetism of everyday fridge magnets and compass needles, and antiferromagnetism, in which materials have magnetic properties at the microscale yet are not macroscopically magnetized. Now, the MIT team has demonstrated a new form of magnetism , termed "p-wave magnetism." Physicists have long observed that electrons of atoms in regular ferromagnets share the same orientation of "spin," like so many tiny compasses pointing in the same direction. This spin alignment generates a magnetic field, which gives a ferromagnet its inherent magnetism. Electrons belonging to magnetic atoms in an antiferromagnet also have spin, although these spins alternate, with electrons orbiting neighboring atoms aligning their spins antiparalle...

new research in qauntum physics

         VISIT:https: //hep-conferences.sciencefather.com/          N ew research in  qauntum physics.                                                    Alphabet Has a Second, Secretive Quantum Computing Team Recent research in quantum physics includes the development of quantum computers, which are expected to be much more powerful than conventional computers and could revolutionize many aspects of technology, such as artificial intelligence and cryptography. Other research includes the development of quantum sensors for a variety of applications, including medical diagnostics, and the study of quantum entanglement and its potential to enable quantum computing and secure communication. Additionally, research is being conducted into the applications of quantum mechanics in materials science, such as unde...

Freezing light? Italian scientists froze fastest thing in universe, here’s how

In a rare occurrence, physics made it possible to control the fastest travelling element - light. Italian scientists have managed to freeze the light, as per reports. A recent study published in a British weekly journal reportedly revealed that light can exhibit ‘ supersolid behavior ’ a unique state of matter that flows without friction while retaining a solid-like structure. The research, led by Antonio Gianfate from CNR Nanotec and Davide Nigro from the University of Pavia, marks a significant step in understanding supersolidity in light. The scientists described their findings as “just the beginning” of this exploration, as per reports. In what can be termed as ‘manipulating photons under controlled quantum conditions ’, the scientists demonstrated that light, too, can exhibit this behaviour. (A photon is a bundle of electromagnetic energy which is massless, and travel at the speed of light) How did scientists freeze light? As we know, freezing involves lowering a liquid’s tempera...