Saturday, October 19, 2024

Century-old photoelectric effect inspires a new search for quantum gravity






According to quantum mechanics, our universe is like a Lego set. All matter particles, as well as particles such as light that act as messengers between them, come in discrete blocks of energy. By rearranging these blocks, it is possible to build everything we observe around us.

Well, almost everything. Gravity, a crucial piece of the universe, is missing from the quantum Lego set. But while there is still no quantum theory of gravity, the challenge of detecting its signatures now looks a little more manageable thanks to a proposed experiment that takes inspiration from the photoelectric effect, which Albert Einstein used to prove the quantum nature of light more than a century ago.

History revisited

Quantum mechanics and general relativity each, independently, provide accurate descriptions of our universe – but only at short and long distances, respectively. Bridging the two is one of the deepest problems facing physics, with tentative theories approaching it from different perspectives.

However, all efforts of describing a quantum theory of gravity agree on one thing: if gravity is quantum, then it, too, must have a particle that carries its force in discrete packages, just as other forces do.

“Still hard, but not as hard as we thought”

While the idea of using resonant bars to detect gravitational waves dates back to the 1960s, the possibility of using it to detect quantum transitions is new. “We realized if you change perspectives and instead of measuring change in position, you measure change in energy in the quantum state, you can learn more,” Pikovski says.

In their study, Pikovski and colleagues used LIGO’s repository of gravitational-wave data to narrow down the frequency and energy range of typical gravitational waves. This allowed them to calculate the type of resonant bar required to detect gravitons. LIGO could also help them cross-correlate any signals they detect.

“When these three ingredients—resonant bar as a macroscopic quantum detector, detecting quantum transitions using quantum sensors and cross-correlating detection with LIGO— are taken altogether, it turns out detecting a graviton is still hard but not as hard as we thought,” Pikovski says.

So when are we going to start detecting?

On paper, the experiment shows promise. But actually building a massive graviton detector with measurable quantum transitions will be anything but easy.

Part of the reason for this is that a typical gravitational wave shower can consist of approximately zillions of gravitons. Just as the pattern of individual raindrops can be heard as they fall on a tin roof, carefully prepared resonant bars should, in principle, be able to detect individual incoming gravitons within these gravitational wave showers.

But for this to happen, the bars must be protected from noise and cooled down to their least energetic state. Otherwise, such tiny energy changes may be impossible to observe.

Vivishek Sudhir, an expert in quantum measurements at MIT who was not part of the research team, describes it as “an enormous practical challenge still, one that we do not currently have the technology for”.

Similarly, quantum sensing has been achieved in resonators, but only at much smaller masses than the tens of kilograms or more required to detect gravitons. The team is, however, working on a potential solution: Tobar, a PhD student at Stockholm and the study’s lead author, is devising a version of the experiment that would send the signal from the bars to smaller masses using transducers – in effect, meeting the quantum sensing challenge in the middle. “It’s not something you can do today, but I would guess we can achieve it within a decade or two,” Pikovski says.

Sudhir agrees that quantum measurements and experiments are rapidly progressing. “Keep in mind that only 15 years ago, nobody imagined that tangibly macroscopic systems would even be prepared in quantum states,” he says. “Now, we can do that."

Website: International Research Awards on High Energy Physics and Computational Science.

#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics
#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience
#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing
#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link : https://hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
Contact us : contact@sciencefather.com


Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA

No comments:

Post a Comment