Skip to main content

AI pioneer Geoffrey Hinton, who warned of X-risk, wins Nobel Prize in Physics








Geoffrey E. Hinton, a leading artificial intelligence researcher and professor emeritus at the University of Toronto, has been awarded the 2024 Nobel Prize in Physics alongside John J. Hopfield of Princeton University.

The Royal Swedish Academy of Sciences has awarded both men the prize of 11 million Swedish kronor (approximately $1.06 million USD), to be shared equally between the laureates.

Hinton has been nicknamed by various outlets and fellow researchers as the “Godfather of AI” due to his revolutionary work in artificial neural networks, a foundational technology underpinning modern artificial intelligence.

Despite the recognition, Hinton has grown increasingly cautious about the future of AI. In 2023, he left his role then at Google’s DeepMind unit to speak more freely about the potential dangers posed by uncontrolled AI development.

Hinton has warned that rapid advancements in AI could lead to unintended and harmful consequences, including misinformation, job displacement, and even existential threats — including human extinction, or so-called “x-risk.” He has expressed concern that the very technology he helped create may eventually surpass human intelligence in unpredictable ways, a scenario he finds particularly troubling.

As MIT Tech Review reported after interviewing him in May 2023, Hinton was particularly concerned about bad actors, such as authoritarian leaders, who could use AI to manipulate elections, wage wars, or carry out immoral objectives. He expressed concern that AI systems, when tasked with achieving goals, may develop dangerous subgoals, like monopolizing energy resources or self-replication.

While Hinton did not sign the high-profile letters calling for a moratorium on AI development, his departure from Google signaled a pivotal moment for the tech industry.

Hinton believes that, without global regulation, AI systems could become uncontrollable, a sentiment echoed by many within the field. His vision for AI is now shaped by both its immense potential and the looming risks it carries.


Website: International Research Awards on High Energy Physics and Computational Science.

#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics
#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience
#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing
#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link : hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners :hep-conferences.sciencefather.com/awards-winners/
Contact us : contact@sciencefather.com


Get Connected Here:
==================
Social Media Link
Twitter :x.com/Psciencefather?mx=2
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA

Comments

Popular posts from this blog

new research in qauntum physics

         VISIT:https: //hep-conferences.sciencefather.com/          N ew research in  qauntum physics.                                                    Alphabet Has a Second, Secretive Quantum Computing Team Recent research in quantum physics includes the development of quantum computers, which are expected to be much more powerful than conventional computers and could revolutionize many aspects of technology, such as artificial intelligence and cryptography. Other research includes the development of quantum sensors for a variety of applications, including medical diagnostics, and the study of quantum entanglement and its potential to enable quantum computing and secure communication. Additionally, research is being conducted into the applications of quantum mechanics in materials science, such as unde...

Freezing light? Italian scientists froze fastest thing in universe, here’s how

In a rare occurrence, physics made it possible to control the fastest travelling element - light. Italian scientists have managed to freeze the light, as per reports. A recent study published in a British weekly journal reportedly revealed that light can exhibit ‘ supersolid behavior ’ a unique state of matter that flows without friction while retaining a solid-like structure. The research, led by Antonio Gianfate from CNR Nanotec and Davide Nigro from the University of Pavia, marks a significant step in understanding supersolidity in light. The scientists described their findings as “just the beginning” of this exploration, as per reports. In what can be termed as ‘manipulating photons under controlled quantum conditions ’, the scientists demonstrated that light, too, can exhibit this behaviour. (A photon is a bundle of electromagnetic energy which is massless, and travel at the speed of light) How did scientists freeze light? As we know, freezing involves lowering a liquid’s tempera...

Physicists observe a new form of magnetism for the first time

MIT physicists have demonstrated a new form of magnetism that could one day be harnessed to build faster, denser, and less power-hungry " spintronic " memory chips. The new magnetic state is a mash-up of two main forms of magnetism: the ferromagnetism of everyday fridge magnets and compass needles, and antiferromagnetism, in which materials have magnetic properties at the microscale yet are not macroscopically magnetized. Now, the MIT team has demonstrated a new form of magnetism , termed "p-wave magnetism." Physicists have long observed that electrons of atoms in regular ferromagnets share the same orientation of "spin," like so many tiny compasses pointing in the same direction. This spin alignment generates a magnetic field, which gives a ferromagnet its inherent magnetism. Electrons belonging to magnetic atoms in an antiferromagnet also have spin, although these spins alternate, with electrons orbiting neighboring atoms aligning their spins antiparalle...