Skip to main content

China achieves new progress in building High Energy Photon Source

 


Major progress has been made in the construction of the High Energy Photon Source (HEPS), the first high-energy synchrotron radiation light source in China, with the electron beams with currents reaching 12 mA stored in the HEPS storage ring. The Institute of High Energy Physics (IHEP) under the Chinese Academy of Sciences, the main HEPS developer, announced the new achievement in Beijing's suburban Huairou District on Monday. As one of the country's key scientific and technological infrastructure projects, HEPS is expected to become one of the brightest fourth-generation synchrotron radiation facilities worldwide and will serve as a research platform for material science, chemical engineering, biomedicine and other fields. The construction of the HEPS project began on June 29, 2019. The facility is composed of several parts, including accelerators, beamlines, end stations and support facilities. A synchrotron radiation light source is a source of electromagnetic radiation usually produced by a storage ring. To generate extremely bright light, electrons will be accelerated to near the speed of light in several stages and forced to travel in a closed path. The electron storage ring, with a circumference of 1,360.4 meters, is the main component of the HEPS accelerator complex. The HEPS storage ring is one of the largest synchrotron light source accelerators in the world and the largest in China. Its primary function is to store high-energy, high-quality electron beams and generate high-performance synchrotron radiation, according to Pan Weimin, the HEPS project director. The commissioning of the storage ring was launched on July 23. A total of 1,776 magnets, over 2,500 power supplies and 578 electron beam position monitors have been installed on the storage ring, with over 100,000 control signals. "Any small hardware error could affect the trajectory of the electron beam, which is undoubtedly a huge challenge for the commissioning of the storage ring," said Pan. Commissioning of the HEPS storage ring will continue in the next few months, with the aim of achieving higher beam currents with a sufficiently long beam lifetime for vacuum conditioning and beamline commissioning, said Jiao Yi, deputy head of the HEPS accelerator division. The HEPS project is expected to be ready for operation by the end of 2025. Once completed, HEPS will be able to emit light that is one trillion times brighter than the sun, and will be open to users in fields such as aerospace, energy, environment, life science and pharmaceuticals, according to IHEP.


More Details: Title: International Research Awards on High Energy Physics and Computational Science by ScienceFather. Website: physics.sciencefather.com Visit Our Award Nomination : https://x-i.me/hepnom Contact us : Physicsinquiry@sciencefather.com


Get Connected Here: ==================
Instagram : https://x-i.me/Vn71
Twitter      : https://x-i.me/unl4
Pinterest   : https://x-i.me/y7HN
tumblr       : https://x-i.me/Z7js





Comments

Popular posts from this blog

Physicists observe a new form of magnetism for the first time

MIT physicists have demonstrated a new form of magnetism that could one day be harnessed to build faster, denser, and less power-hungry " spintronic " memory chips. The new magnetic state is a mash-up of two main forms of magnetism: the ferromagnetism of everyday fridge magnets and compass needles, and antiferromagnetism, in which materials have magnetic properties at the microscale yet are not macroscopically magnetized. Now, the MIT team has demonstrated a new form of magnetism , termed "p-wave magnetism." Physicists have long observed that electrons of atoms in regular ferromagnets share the same orientation of "spin," like so many tiny compasses pointing in the same direction. This spin alignment generates a magnetic field, which gives a ferromagnet its inherent magnetism. Electrons belonging to magnetic atoms in an antiferromagnet also have spin, although these spins alternate, with electrons orbiting neighboring atoms aligning their spins antiparalle...

Green comet to pass Earth, won't be back for another 50,000 years

   visit:  https://hep-conferences.sciencefather.com/ After travelling from the icy reaches of our Solar System it will come closest to the Sun on January 12 and pass nearest to Earth on February 1.   A newly discovered comet could be visible to the naked eye as it shoots past Earth and the Sun in the coming weeks for the first time in 50,000 years, astronomers have said. The comet is called C/2022 E3 (ZTF) after the Zwicky Transient Facility, which first spotted it passing Jupiter in March last year. After travelling from the icy reaches of our Solar System it will come closest to the Sun on January 12 and pass nearest to Earth on February 1. It will be easy to spot with a good pair of binoculars and likely even with the naked eye, provided the sky is not too illuminated by city lights or the Moon. The comet "will be brightest when it is closest to the Earth", Thomas Prince, a physics professor at the California Institute of Technology who works at the Zwicky Transi...

"Explore the Fourth Dimension"

Fourth Dimension   The fourth dimension is a fascinating concept that has captured the imaginations of scientists, mathematicians, and artists for centuries. Unlike our three-dimensional world, which is limited by the linear flow of time, the fourth dimension is a realm of space and time that exists beyond our everyday experience. One way to visualize the fourth dimension is through the use of a hypercube, also known as a tesseract. A hypercube is a cube within a cube, with additional lines and edges connecting the vertices of the two cubes. It's impossible to construct in our three-dimensional world, but it provides a glimpse into what the fourth dimension might look like. Another way to understand the fourth dimension is through the concept of a wormhole, a theoretical passage through space-time that connects two distant points in the universe. A wormhole is like a shortcut through the fabric of space-time, allowing us to travel vast distances in an instant. While there is no de...