Tuesday, July 30, 2024

X(3960) is a tetraquark, theoretical analysis suggests

 


Exotic particle Artist’s impression of a tetraquark showing its four constituent quarks. (Courtesy: CERN)


A theoretical study has confirmed that a particle observed at CERN’s LHCb experiment in 2022 is indeed a tetraquark – supporting earlier hypotheses that were based on the analysis of its observed decay products. Tetraquarks comprise four quarks and do not fit into the conventional classification of hadrons, which defines only mesons (quark and an antiquark) and baryons (three quarks). Tetraquarks are of great interest to particle physicists because their  exotic nature provides opportunities to deepen our understanding of the intricate physics of the strong interactions that bind quarks together in hadrons.

“X(3960) is a new hadron discovered at the Large Hadron Collider (LHC),” Bing-Dong Wan of Liaoning Normal University and Hangzhou Institute for Advanced Study, and the author of the study, tells Physics World. “Since 2003, many new hadrons have been discovered in experiments, and some of them appear to be tetraquarks, while only a few can be confirmed as such.”

Named for its mass of 3.96 GeV – about four times that of a proton – X(3960) stands out, even amongst exotic hadrons. Its decay into D mesons containing heavy charm quarks implies that X(3960) should contain charm quarks. The details of the interaction of charm quarks with other strongly interacting particles is rather poorly understood, making X(3960) interesting to study.  Additionally, by the standards of unstable strongly interacting particles, X(3960) has a long lifetime – around 10-23 s – indicating unique underlying quark dynamics.

These intriguing properties of X(3960) led Wan to investigate its structure theoretically to determine if it is a tetraquark or not. In a recent paper in Nuclear Physics B, he describes how he used Shifman-Vainshtein-Zakharov sum rules in this calculations. This approach examines strongly interacting particles by relating their properties to those of their constituent quarks and the gluons that bind them together. The dynamics of these constituents can be accurately described by the fundamental theory of strong interactions known as quantum chromodynamics (QCD).



More Details: Title: International Research Awards on High Energy Physics and Computational Science by ScienceFather. Website: physics.sciencefather.com Visit Our Award Nomination : https://x-i.me/hepnom Contact us : Physicsinquiry@sciencefather.com


Get Connected Here: ==================
Instagram : https://x-i.me/Vn71
Twitter      : https://x-i.me/unl4
Pinterest   : https://x-i.me/y7HN
tumblr       : https://x-i.me/Z7js


No comments:

Post a Comment