Skip to main content

X(3960) is a tetraquark, theoretical analysis suggests

 


Exotic particle Artist’s impression of a tetraquark showing its four constituent quarks. (Courtesy: CERN)


A theoretical study has confirmed that a particle observed at CERN’s LHCb experiment in 2022 is indeed a tetraquark – supporting earlier hypotheses that were based on the analysis of its observed decay products. Tetraquarks comprise four quarks and do not fit into the conventional classification of hadrons, which defines only mesons (quark and an antiquark) and baryons (three quarks). Tetraquarks are of great interest to particle physicists because their  exotic nature provides opportunities to deepen our understanding of the intricate physics of the strong interactions that bind quarks together in hadrons.

“X(3960) is a new hadron discovered at the Large Hadron Collider (LHC),” Bing-Dong Wan of Liaoning Normal University and Hangzhou Institute for Advanced Study, and the author of the study, tells Physics World. “Since 2003, many new hadrons have been discovered in experiments, and some of them appear to be tetraquarks, while only a few can be confirmed as such.”

Named for its mass of 3.96 GeV – about four times that of a proton – X(3960) stands out, even amongst exotic hadrons. Its decay into D mesons containing heavy charm quarks implies that X(3960) should contain charm quarks. The details of the interaction of charm quarks with other strongly interacting particles is rather poorly understood, making X(3960) interesting to study.  Additionally, by the standards of unstable strongly interacting particles, X(3960) has a long lifetime – around 10-23 s – indicating unique underlying quark dynamics.

These intriguing properties of X(3960) led Wan to investigate its structure theoretically to determine if it is a tetraquark or not. In a recent paper in Nuclear Physics B, he describes how he used Shifman-Vainshtein-Zakharov sum rules in this calculations. This approach examines strongly interacting particles by relating their properties to those of their constituent quarks and the gluons that bind them together. The dynamics of these constituents can be accurately described by the fundamental theory of strong interactions known as quantum chromodynamics (QCD).



More Details: Title: International Research Awards on High Energy Physics and Computational Science by ScienceFather. Website: physics.sciencefather.com Visit Our Award Nomination : https://x-i.me/hepnom Contact us : Physicsinquiry@sciencefather.com


Get Connected Here: ==================
Instagram : https://x-i.me/Vn71
Twitter      : https://x-i.me/unl4
Pinterest   : https://x-i.me/y7HN
tumblr       : https://x-i.me/Z7js


Comments

Popular posts from this blog

new research in qauntum physics

         VISIT:https: //hep-conferences.sciencefather.com/          N ew research in  qauntum physics.                                                    Alphabet Has a Second, Secretive Quantum Computing Team Recent research in quantum physics includes the development of quantum computers, which are expected to be much more powerful than conventional computers and could revolutionize many aspects of technology, such as artificial intelligence and cryptography. Other research includes the development of quantum sensors for a variety of applications, including medical diagnostics, and the study of quantum entanglement and its potential to enable quantum computing and secure communication. Additionally, research is being conducted into the applications of quantum mechanics in materials science, such as unde...

Freezing light? Italian scientists froze fastest thing in universe, here’s how

In a rare occurrence, physics made it possible to control the fastest travelling element - light. Italian scientists have managed to freeze the light, as per reports. A recent study published in a British weekly journal reportedly revealed that light can exhibit ‘ supersolid behavior ’ a unique state of matter that flows without friction while retaining a solid-like structure. The research, led by Antonio Gianfate from CNR Nanotec and Davide Nigro from the University of Pavia, marks a significant step in understanding supersolidity in light. The scientists described their findings as “just the beginning” of this exploration, as per reports. In what can be termed as ‘manipulating photons under controlled quantum conditions ’, the scientists demonstrated that light, too, can exhibit this behaviour. (A photon is a bundle of electromagnetic energy which is massless, and travel at the speed of light) How did scientists freeze light? As we know, freezing involves lowering a liquid’s tempera...

Physicists observe a new form of magnetism for the first time

MIT physicists have demonstrated a new form of magnetism that could one day be harnessed to build faster, denser, and less power-hungry " spintronic " memory chips. The new magnetic state is a mash-up of two main forms of magnetism: the ferromagnetism of everyday fridge magnets and compass needles, and antiferromagnetism, in which materials have magnetic properties at the microscale yet are not macroscopically magnetized. Now, the MIT team has demonstrated a new form of magnetism , termed "p-wave magnetism." Physicists have long observed that electrons of atoms in regular ferromagnets share the same orientation of "spin," like so many tiny compasses pointing in the same direction. This spin alignment generates a magnetic field, which gives a ferromagnet its inherent magnetism. Electrons belonging to magnetic atoms in an antiferromagnet also have spin, although these spins alternate, with electrons orbiting neighboring atoms aligning their spins antiparalle...