Skip to main content

How a Twist in Physics Could Change Technology Forever


 

Schematic representation of the experimental setup used to shape electrons into chiral coils of mass and charge. Credit: Dr. Yiqi Fang, University of Konstanz, edited


Physicists at the University of Konstanz have discovered a way to imprint a previously unseen geometrical form of chirality onto electrons using laser light, creating chiral coils of mass and charge.

This breakthrough in manipulating electron chirality has vast implications for quantum optics, particle physics, and electron microscopy, paving the way for new scientific explorations and technological innovations.

Understanding Chirality and Its Implications

Have you ever placed the palm of your right hand on the back of your left hand, in such a way that all fingers point in the same direction? If you have, then you probably know that your right thumb will not touch its left counterpart. Neither rotations nor translations nor their combinations can turn a left hand into a right hand and vice versa. This feature is called chirality.

Scientists at the University of Konstanz have now succeeded in imprinting such a three-dimensional chirality onto the wave function of a single electron. They used laser light to shape the electron’s matter wave into left-handed or right-handed coils of mass and charge. Such engineered elementary particles with chiral geometries other than their intrinsic spin have implications for fundamental physics but may also be useful for a range of applications, such as quantum optics, particle physics, or electron microscopy.

“We are opening up new potentials for scientific research that have not been considered before,” says Peter Baum, corresponding author of the study and head of the Light and Matter research group at the University of Konstanz.

Chirality of Single Particles and Composites

Chiral objects play a crucial role in nature and technology. In the realm of elementary particles, one of the most important chiral phenomena is spin, which is often compared to a self-rotation of a particle, but is in fact a purely quantum-mechanical property with no classical analog. An electron, for example, has a spin of one-half and therefore often exists in two potential states: a right-handed and a left-handed one. This fundamental aspect of quantum mechanics gives rise to many important real-world phenomena like almost all magnetic phenomena or the periodic table of the elements. Electron spin is also critical to the development of advanced technologies such as quantum computers or superconductors.


International Research Awards on HEPCS | 25-26 July 2024 | New Delhi, India
More details: -----------------
Visit Our Award Nomination : https://x-i.me/hepnom
Contact us : Physicsquery@sciencefather.com
Get Connected Here: ==================



Comments

Popular posts from this blog

"Explore the Fourth Dimension"

Fourth Dimension   The fourth dimension is a fascinating concept that has captured the imaginations of scientists, mathematicians, and artists for centuries. Unlike our three-dimensional world, which is limited by the linear flow of time, the fourth dimension is a realm of space and time that exists beyond our everyday experience. One way to visualize the fourth dimension is through the use of a hypercube, also known as a tesseract. A hypercube is a cube within a cube, with additional lines and edges connecting the vertices of the two cubes. It's impossible to construct in our three-dimensional world, but it provides a glimpse into what the fourth dimension might look like. Another way to understand the fourth dimension is through the concept of a wormhole, a theoretical passage through space-time that connects two distant points in the universe. A wormhole is like a shortcut through the fabric of space-time, allowing us to travel vast distances in an instant. While there is no de...

Physicists observe a new form of magnetism for the first time

MIT physicists have demonstrated a new form of magnetism that could one day be harnessed to build faster, denser, and less power-hungry " spintronic " memory chips. The new magnetic state is a mash-up of two main forms of magnetism: the ferromagnetism of everyday fridge magnets and compass needles, and antiferromagnetism, in which materials have magnetic properties at the microscale yet are not macroscopically magnetized. Now, the MIT team has demonstrated a new form of magnetism , termed "p-wave magnetism." Physicists have long observed that electrons of atoms in regular ferromagnets share the same orientation of "spin," like so many tiny compasses pointing in the same direction. This spin alignment generates a magnetic field, which gives a ferromagnet its inherent magnetism. Electrons belonging to magnetic atoms in an antiferromagnet also have spin, although these spins alternate, with electrons orbiting neighboring atoms aligning their spins antiparalle...

Quantum Tunneling Breakthrough: Technion Scientists Move Atoms With Precision

In a groundbreaking experiment at the Technion Faculty of Physics , researchers demonstrated the transfer of atoms via quantum tunneling using optical tweezers. This novel method, which strategically avoids trapping atoms in the middle tweezer, represents a notable stride toward innovative quantum technologies. Quantum Tunneling in Optical Tweezers A new experiment at the Technion Faculty of Physics demonstrates how atoms can be transferred between locations using quantum tunneling with optical tweezers. Led by Prof. Yoav Sagi and doctoral student Yanay Florshaim from the Solid State Institute, this research was published recently in Science Advances. The experiment relies on optical tweezers , a powerful tool that uses focused laser beams to trap and manipulate tiny particles like atoms, molecules, and even living cells. Here’s how it works: when light interacts with matter, it creates a force proportional to the light’s intensity. This force, though too weak to impact larger objects,...