Skip to main content

In a role reversal, physics may help find solutions to long-standing mathematical problems.

 


If maths is the language the universe was written in, then pi, written as π, is surely one of its favourite characters. Initially discovered as a mathematical constant of the ratio between the circumference and radius of a circle, we soon realised that the number pops up everywhere when we study the properties of the universe and its constituents. From thermodynamics and electromagnetism to biological sciences and creation of our entire digital ecosystem, the humble pi makes its appearance. The number has gained such a cult following that we even have a day to celebrate it - pi day, celebrated on the 14th of March, because of its resemblance to the first 3 digits

Pi is an irrational number, meaning it cannot be written as the ratio of two real numbers and the digits after the decimal continues to infinity. In order to find the digits of pi after the decimal, mathematicians use what is called a series representation - adding infinitely many digits.

However, using even the most modern series representation, calculating the digits of pi can be an arduous task, and involves summing billions of digits. Pi belongs to a class of numbers called transcendental numbers. These are non-algebraic numbers, meaning they cannot be written in the form of an algebraic equation with rational coefficients.

The Euler-Beta function usually illustrated in theoretical physics provides the backbone for explaining phenomena such as high-energy particle collisions. In high-energy experiments, like the Large Hadron Collider (LHC) in CERN, Switzerland, particles, like protons or electrons, are accelerated to speeds close to the speed of light and then collide. Similar to smashing an object to break it open and reveal its constituents, colliding particles at such high energies allows for the production of virtual particles to be created, thus probing the constituent particles of the Universe. Such experiments can be termed as scattering experiments. Light scattering from objects allows us to see an object. Similarly, particles scattering from high-energy collisions allows us to see the constituents of the particles. The more energy we put into the scattering experiments, higher the resolving power of the experiment, revealing higher- mass virtual particles.



International Research Conference on High Energy Physics and Computational Science

More details: -----------------
Visit Our Website : https://x-i.me/hep
Visit Our Conference Submission : https://x-i.me/hepcon
Visit Our Award Nomination : https://x-i.me/hepnom

Get Connected Here: ==================


Comments

Popular posts from this blog

Physicists observe a new form of magnetism for the first time

MIT physicists have demonstrated a new form of magnetism that could one day be harnessed to build faster, denser, and less power-hungry " spintronic " memory chips. The new magnetic state is a mash-up of two main forms of magnetism: the ferromagnetism of everyday fridge magnets and compass needles, and antiferromagnetism, in which materials have magnetic properties at the microscale yet are not macroscopically magnetized. Now, the MIT team has demonstrated a new form of magnetism , termed "p-wave magnetism." Physicists have long observed that electrons of atoms in regular ferromagnets share the same orientation of "spin," like so many tiny compasses pointing in the same direction. This spin alignment generates a magnetic field, which gives a ferromagnet its inherent magnetism. Electrons belonging to magnetic atoms in an antiferromagnet also have spin, although these spins alternate, with electrons orbiting neighboring atoms aligning their spins antiparalle...

new research in qauntum physics

         VISIT:https: //hep-conferences.sciencefather.com/          N ew research in  qauntum physics.                                                    Alphabet Has a Second, Secretive Quantum Computing Team Recent research in quantum physics includes the development of quantum computers, which are expected to be much more powerful than conventional computers and could revolutionize many aspects of technology, such as artificial intelligence and cryptography. Other research includes the development of quantum sensors for a variety of applications, including medical diagnostics, and the study of quantum entanglement and its potential to enable quantum computing and secure communication. Additionally, research is being conducted into the applications of quantum mechanics in materials science, such as unde...

Scientists Discover New “Hall Effect” That Could Revolutionize Electronics

Scientists discovered a new Hall effect driven by spin currents in noncollinear antiferromagnets, offering a path to more efficient and resilient spintronic devices . A research team led by Colorado State University graduate student Luke Wernert and Associate Professor Hua Chen has identified a previously unknown type of Hall effect that could lead to more energy-efficient electronic devices . Their study, published in Physical Review Letters, was conducted in collaboration with graduate student Bastián Pradenas and Professor Oleg Tchernyshyov of Johns Hopkins University. The researchers uncovered evidence of a new property, dubbed the “Hall mass,” in a class of complex magnetic materials known as noncollinear antiferromagnets . The traditional Hall effect, discovered by Edwin Hall at Johns Hopkins in 1879, describes how an electric current is deflected sideways when subjected to an external magnetic field, generating a measurable voltage. This effect plays a crucial role in technologi...