Skip to main content

Hunting for millicharged particles at the LHC

 


The FORMOSA demonstrator (foreground) during installation in the underground cavern of the FASER experiment (background).

The LHC family of experiments continues to grow. Alongside the four main experiments, a new generation of smaller experiments is contributing to the search for particles predicted by theories beyond the Standard Model, our current theory of particle physics. Recently, the FORMOSA demonstrator, which hunts for millicharged particles, has been installed in the cavern containing the FASER detector, 480 meters downstream from the ATLAS interaction point. It will now collect its first data. Some theories predict the existence of millicharged elementary particles that would have a charge much smaller than the electron charge. If they exist, they would give clues to a theory beyond the Standard Model and could be considered as candidates for dark matter. The FORMOSA demonstrator aims to prove the feasibility of the full experiment, which is intended to be installed in a proposed underground hall located about 620 metres away from the ATLAS interaction point. This experimental area – the Forward Physics Facility – is under study within the Physics Beyond Colliders initiative and is expected to host several experiments that will search for long-lived particles predicted by theories beyond the Standard Model. These particles would be produced by collisions at the centre of the ATLAS detector and would interact feebly with Standard Model particles. If approved, the experiments, among them the the proposed FASERν 2 and FLArE experiments, could start taking data when the High-Luminosity LHC is switched on in 2029. The FORMOSA demonstrator comprises scintillators. When interacting with a charged particle, the scintillators emit photons that are subsequently converted into an electrical signal. While cosmic muons or those from ATLAS collisions may also strike the scintillators, millicharged particles typically deposit much less energy into each layer, distinguishing them from muons that traverse the detector. “Initial studies with so-called no-beam data and source tests look already promising. This marks an important step towards achieving the goal to run the demonstrator this year and a great demonstration of the collaborative spirit of the projects within the Forward Physics Facility,” says project leader Matthew Citron from University of California, Davis. Millicharged particles have become a particular focus of research in recent years. The MilliQan detector, located 33 meters away from the CMS interaction point, as well as MoEDAL-MAPP close to LHCb, started data taking during LHC Run 3. In 2020, a study carried out with a smaller demonstrator, MilliQan had ruled out the existence of millicharged particles for a range of masses and charges. Thanks to a higher volume of detection and its location in the far forward region of the LHC collisions, the FORMOSA experiment hopes to extend this search.


International Research Conference on High Energy Physics and Computational Science

More details: -----------------
Visit Our Website : https://x-i.me/hep
Visit Our Conference Submission : https://x-i.me/hepcon
Visit Our Award Nomination : https://x-i.me/hepnom

Get Connected Here: ==================

Comments

Popular posts from this blog

"Explore the Fourth Dimension"

Fourth Dimension   The fourth dimension is a fascinating concept that has captured the imaginations of scientists, mathematicians, and artists for centuries. Unlike our three-dimensional world, which is limited by the linear flow of time, the fourth dimension is a realm of space and time that exists beyond our everyday experience. One way to visualize the fourth dimension is through the use of a hypercube, also known as a tesseract. A hypercube is a cube within a cube, with additional lines and edges connecting the vertices of the two cubes. It's impossible to construct in our three-dimensional world, but it provides a glimpse into what the fourth dimension might look like. Another way to understand the fourth dimension is through the concept of a wormhole, a theoretical passage through space-time that connects two distant points in the universe. A wormhole is like a shortcut through the fabric of space-time, allowing us to travel vast distances in an instant. While there is no de...

Physicists observe a new form of magnetism for the first time

MIT physicists have demonstrated a new form of magnetism that could one day be harnessed to build faster, denser, and less power-hungry " spintronic " memory chips. The new magnetic state is a mash-up of two main forms of magnetism: the ferromagnetism of everyday fridge magnets and compass needles, and antiferromagnetism, in which materials have magnetic properties at the microscale yet are not macroscopically magnetized. Now, the MIT team has demonstrated a new form of magnetism , termed "p-wave magnetism." Physicists have long observed that electrons of atoms in regular ferromagnets share the same orientation of "spin," like so many tiny compasses pointing in the same direction. This spin alignment generates a magnetic field, which gives a ferromagnet its inherent magnetism. Electrons belonging to magnetic atoms in an antiferromagnet also have spin, although these spins alternate, with electrons orbiting neighboring atoms aligning their spins antiparalle...

Quantum Tunneling Breakthrough: Technion Scientists Move Atoms With Precision

In a groundbreaking experiment at the Technion Faculty of Physics , researchers demonstrated the transfer of atoms via quantum tunneling using optical tweezers. This novel method, which strategically avoids trapping atoms in the middle tweezer, represents a notable stride toward innovative quantum technologies. Quantum Tunneling in Optical Tweezers A new experiment at the Technion Faculty of Physics demonstrates how atoms can be transferred between locations using quantum tunneling with optical tweezers. Led by Prof. Yoav Sagi and doctoral student Yanay Florshaim from the Solid State Institute, this research was published recently in Science Advances. The experiment relies on optical tweezers , a powerful tool that uses focused laser beams to trap and manipulate tiny particles like atoms, molecules, and even living cells. Here’s how it works: when light interacts with matter, it creates a force proportional to the light’s intensity. This force, though too weak to impact larger objects,...