Skip to main content

New particle at last! Physicists detect the first “glueball”


 Glueballs are an unusual, unconfirmed Standard Model prediction, suggesting bound states of gluons alone exist. We just found our first one.

A view from above of the BES III detector at the electron-positron collider in Beijing, China. Exotic particles have newly been detected here, including X, Y, and Z mesons which don't fit the normal scheme of a quark-antiquark combination. With the X(2370) particle, we may have detected the first glueball in history

At a fundamental level, the matter we know of is largely composed of quarks, like the up and down quarks, which make up protons and neutrons: the particles at the heart of every atom’s core. Quarks and gluons, operating under the strong force and the rules of quantum chromodynamics, make up all the known hadrons, baryons, and mesons in existence, providing us with a huge spectrum of particle states. But, in theory, there should be another kind of bound state never observed before: glueballs, which are quarkless composite particles made of bound gluons alone. At last, in 2024, we may have found our first one..

When it comes to the Standard Model of particle physics, most people incorrectly assume that it’s known, it’s correct, and that there are no more open questions about its validity. While the Standard Model has certainly withstood every challenge that’s been thrown at it by way of direct detection experiments, there are still a whole slew of questions that have yet to be answered. Although the matter that makes us up is composed of atoms, which are made of protons, neutrons, and electrons, and where the protons and neutrons are made up of three quarks apiece — all held together by gluons through the strong interaction — that’s not the only possible way to have bound states of matter.

In theory, at least according to quantum chromodynamics (our theory of the strong nuclear force), there should be multiple ways to make a bound state of quarks, antiquarks, and/or gluons alone. You can have baryons (with 3 quarks each) or anti-baryons (with 3 antiquarks each). You can have mesons (with a quark-antiquark pair). You can have exotic states like tetraquarks (2 quarks and 2 antiquarks), pentaquarks (4 quarks and 1 antiquark or 1 quark and 4 antiquarks), or hexaquarks (6 quarks, 3 quarks and 3 antiquarks, or 6 antiquarks), etc. Or, you can also have states made of gluons alone — with no valence quarks or antiquarks — known a glueballs. In a radical new paper just published in the journal Physical Review Letters, the BES III collaboration just announced that an exotic particle, previously identified as the X(2370), may indeed be the lightest glueball predicted by the Standard Model. Here’s the science of the claim, as well as what it all means.



International Research Conference on High Energy Physics and Computational Science

More details: -----------------
Visit Our Website : https://x-i.me/hep
Visit Our Conference Submission : https://x-i.me/hepcon
Visit Our Award Nomination : https://x-i.me/hepnom

Get Connected Here: ==================

Comments

Popular posts from this blog

Physicists observe a new form of magnetism for the first time

MIT physicists have demonstrated a new form of magnetism that could one day be harnessed to build faster, denser, and less power-hungry " spintronic " memory chips. The new magnetic state is a mash-up of two main forms of magnetism: the ferromagnetism of everyday fridge magnets and compass needles, and antiferromagnetism, in which materials have magnetic properties at the microscale yet are not macroscopically magnetized. Now, the MIT team has demonstrated a new form of magnetism , termed "p-wave magnetism." Physicists have long observed that electrons of atoms in regular ferromagnets share the same orientation of "spin," like so many tiny compasses pointing in the same direction. This spin alignment generates a magnetic field, which gives a ferromagnet its inherent magnetism. Electrons belonging to magnetic atoms in an antiferromagnet also have spin, although these spins alternate, with electrons orbiting neighboring atoms aligning their spins antiparalle...

Green comet to pass Earth, won't be back for another 50,000 years

   visit:  https://hep-conferences.sciencefather.com/ After travelling from the icy reaches of our Solar System it will come closest to the Sun on January 12 and pass nearest to Earth on February 1.   A newly discovered comet could be visible to the naked eye as it shoots past Earth and the Sun in the coming weeks for the first time in 50,000 years, astronomers have said. The comet is called C/2022 E3 (ZTF) after the Zwicky Transient Facility, which first spotted it passing Jupiter in March last year. After travelling from the icy reaches of our Solar System it will come closest to the Sun on January 12 and pass nearest to Earth on February 1. It will be easy to spot with a good pair of binoculars and likely even with the naked eye, provided the sky is not too illuminated by city lights or the Moon. The comet "will be brightest when it is closest to the Earth", Thomas Prince, a physics professor at the California Institute of Technology who works at the Zwicky Transi...

"Explore the Fourth Dimension"

Fourth Dimension   The fourth dimension is a fascinating concept that has captured the imaginations of scientists, mathematicians, and artists for centuries. Unlike our three-dimensional world, which is limited by the linear flow of time, the fourth dimension is a realm of space and time that exists beyond our everyday experience. One way to visualize the fourth dimension is through the use of a hypercube, also known as a tesseract. A hypercube is a cube within a cube, with additional lines and edges connecting the vertices of the two cubes. It's impossible to construct in our three-dimensional world, but it provides a glimpse into what the fourth dimension might look like. Another way to understand the fourth dimension is through the concept of a wormhole, a theoretical passage through space-time that connects two distant points in the universe. A wormhole is like a shortcut through the fabric of space-time, allowing us to travel vast distances in an instant. While there is no de...