Skip to main content

Particle physicists put forward research priorities for coming decade

 



The cover graphic of the P5 report illustrates how discoveries in the quantum realm (left) combined with observations of the hidden universe (right) can intersect to uncover new physics.

A panel of the nation's top particle physicists, chaired by University of California, Berkeley, theoretician Hitoshi Murayama, has issued its final report recommending how the U.S. government should commit its high-energy physics research funds for the next decade and beyond, focusing on neutrinos, dark matter and the cosmic microwave background.

The report by the Particle Physics Project Prioritization Panel (P5) was approved on Friday, Dec. 8, by the High Energy Physics Advisory Panel (HEPAP) and will be sent to the two main funding agencies for physics in the U.S. — the Department of Energy (DOE) and the National Science Foundation (NSF) — to aid them in their decisions about which research to fund. The HEPAP, a permanent advisory committee to DOE and NSF, constitutes a prioritization panel every 10 years.

The panel, consisting of 31 members and one ex-officio member from the U.S. and abroad, considered only large- and medium-sized physics research projects — the kind that can take years or decades to plan and build, enlist contributions from thousands of scientists and cost billions of dollars.

To fit within budget constraints — likely less than $5 billion from the two agencies over 10 years for new projects — the panel had to combine or reconfigure many proposed projects and turn down perhaps two-thirds of them.

"Fiscal responsibility has been a big thing on our mind to make sure that the recommendations are actionable by agencies and can be followed up," said Murayama, the MacAdams Professor of Physics at the UC Berkeley. "We had to be really realistic about our plan."


International Research Conference on High Energy Physics and Computational Science

Submit Your Conference Abstract: https://x-i.me/hepcon
Submit Your Award Nomination: https://x-i.me/hepnom


 

Get Connected Here:
==================

         tumblr : https://www.tumblr.com/blog/high-energy-physics  



#ScienceFather #ScienceDad #STEMDad #SciParent #ScienceFamily #ScienceParenting #ScienceInParenthood #DadOfScience #FatherhoodAndScience #STEMParenting #ScientistDad #light #science #astronomy #d #anycubic #universe #quantumphysics #photon #dprinting

Comments

Popular posts from this blog

Physicists observe a new form of magnetism for the first time

MIT physicists have demonstrated a new form of magnetism that could one day be harnessed to build faster, denser, and less power-hungry " spintronic " memory chips. The new magnetic state is a mash-up of two main forms of magnetism: the ferromagnetism of everyday fridge magnets and compass needles, and antiferromagnetism, in which materials have magnetic properties at the microscale yet are not macroscopically magnetized. Now, the MIT team has demonstrated a new form of magnetism , termed "p-wave magnetism." Physicists have long observed that electrons of atoms in regular ferromagnets share the same orientation of "spin," like so many tiny compasses pointing in the same direction. This spin alignment generates a magnetic field, which gives a ferromagnet its inherent magnetism. Electrons belonging to magnetic atoms in an antiferromagnet also have spin, although these spins alternate, with electrons orbiting neighboring atoms aligning their spins antiparalle...

new research in qauntum physics

         VISIT:https: //hep-conferences.sciencefather.com/          N ew research in  qauntum physics.                                                    Alphabet Has a Second, Secretive Quantum Computing Team Recent research in quantum physics includes the development of quantum computers, which are expected to be much more powerful than conventional computers and could revolutionize many aspects of technology, such as artificial intelligence and cryptography. Other research includes the development of quantum sensors for a variety of applications, including medical diagnostics, and the study of quantum entanglement and its potential to enable quantum computing and secure communication. Additionally, research is being conducted into the applications of quantum mechanics in materials science, such as unde...

Freezing light? Italian scientists froze fastest thing in universe, here’s how

In a rare occurrence, physics made it possible to control the fastest travelling element - light. Italian scientists have managed to freeze the light, as per reports. A recent study published in a British weekly journal reportedly revealed that light can exhibit ‘ supersolid behavior ’ a unique state of matter that flows without friction while retaining a solid-like structure. The research, led by Antonio Gianfate from CNR Nanotec and Davide Nigro from the University of Pavia, marks a significant step in understanding supersolidity in light. The scientists described their findings as “just the beginning” of this exploration, as per reports. In what can be termed as ‘manipulating photons under controlled quantum conditions ’, the scientists demonstrated that light, too, can exhibit this behaviour. (A photon is a bundle of electromagnetic energy which is massless, and travel at the speed of light) How did scientists freeze light? As we know, freezing involves lowering a liquid’s tempera...