Skip to main content

FASER measures high-energy neutrino interaction strength

 



The FASER detector installed 480 m away from the ATLAS detector collision point, in the LHC side tunnel TI12. (image: Maximilien Brice/CERN)


Operating at CERN’s Large Hadron Collider (LHC) since 2022, the FASER experiment is designed to search for extremely weakly interacting particles. Such particles are predicted by many theories beyond the Standard Model that are attempting to solve outstanding problems in physics such as the nature of dark matter and the matter-antimatter imbalance in the Universe. Another goal of the experiment is to study interactions of high-energy neutrinos produced in the LHC collisions, particles that are nearly impossible to detect in the four big LHC experiments. Last week, at the annual Rencontres de Moriond conference, the FASER collaboration presented a measurement of the interaction strength, or “cross section”, of electron neutrinos (νe) and muon neutrinos (νμ). This is the first time such a measurement has been made at a particle collider. Measurements of this kind can provide important insights across different aspects of physics, from understanding the production of “forward” particles in the LHC collisions and improving our understanding of the structure of the proton to interpreting measurements of high-energy neutrinos from astrophysical sources performed by neutrino-telescope experiments. FASER is located in a side tunnel of the LHC accelerator, 480 metres away from the ATLAS detector collision point. At that location, the LHC beam is already nearly 10 metres away, bending away on its circular 27-kilometre path. This is a unique location for studying weakly interacting particles produced in the LHC collisions. Charged particles produced in the collisions are deflected by the LHC magnets. Most neutral particles are stopped by the hundreds of metres of rock between FASER and ATLAS. Only very weakly interacting neutral particles like neutrinos are expected to continue straight on and reach the location where the detector is installed. The probability of a neutrino interacting with matter is very small, but not zero. The type of interaction that FASER is sensitive to is where a neutrino interacts with a proton or a neutron inside the detector. In this interaction, the neutrino transforms into a charged “lepton” of the same family – an electron in the case of an νe, and a muon in the case of a νμ – which is visible in the detector. If the energy of the neutrino is high, several other particles are also produced in the collision. The detector used to perform the measurement consists of 730 interleaved tungsten plates and photographic emulsion plates. The emulsion was exposed during the period from 26 July to 13 September 2022 and then chemically developed and analysed in search of charged particle tracks. Candidates for neutrino interactions were identified by looking for clusters of tracks that could be traced back to a single vertex. One of these tracks then had to be identified as a high-energy electron or muon.



International Research Conference on High Energy Physics and Computational Science

Submit Your Conference Abstract: https://x-i.me/hepcon
Submit Your Award Nomination: https://x-i.me/hepnom


 

Get Connected Here:
==================

         tumblr : https://www.tumblr.com/blog/high-energy-physics  



#photons #physics #light #science #astronomy #d #anycubic #universe #quantumphysics #photon #dprinting #quantummechanics #astrophysics #quantum #sun #energy #space #particles #photography #l #physicist #blackhole #einstein #nasa #resin #physicsfun #dprint #k #warhammer #electrons

Comments

Popular posts from this blog

new research in qauntum physics

         VISIT:https: //hep-conferences.sciencefather.com/          N ew research in  qauntum physics.                                                    Alphabet Has a Second, Secretive Quantum Computing Team Recent research in quantum physics includes the development of quantum computers, which are expected to be much more powerful than conventional computers and could revolutionize many aspects of technology, such as artificial intelligence and cryptography. Other research includes the development of quantum sensors for a variety of applications, including medical diagnostics, and the study of quantum entanglement and its potential to enable quantum computing and secure communication. Additionally, research is being conducted into the applications of quantum mechanics in materials science, such as unde...

Freezing light? Italian scientists froze fastest thing in universe, here’s how

In a rare occurrence, physics made it possible to control the fastest travelling element - light. Italian scientists have managed to freeze the light, as per reports. A recent study published in a British weekly journal reportedly revealed that light can exhibit ‘ supersolid behavior ’ a unique state of matter that flows without friction while retaining a solid-like structure. The research, led by Antonio Gianfate from CNR Nanotec and Davide Nigro from the University of Pavia, marks a significant step in understanding supersolidity in light. The scientists described their findings as “just the beginning” of this exploration, as per reports. In what can be termed as ‘manipulating photons under controlled quantum conditions ’, the scientists demonstrated that light, too, can exhibit this behaviour. (A photon is a bundle of electromagnetic energy which is massless, and travel at the speed of light) How did scientists freeze light? As we know, freezing involves lowering a liquid’s tempera...

Physicists observe a new form of magnetism for the first time

MIT physicists have demonstrated a new form of magnetism that could one day be harnessed to build faster, denser, and less power-hungry " spintronic " memory chips. The new magnetic state is a mash-up of two main forms of magnetism: the ferromagnetism of everyday fridge magnets and compass needles, and antiferromagnetism, in which materials have magnetic properties at the microscale yet are not macroscopically magnetized. Now, the MIT team has demonstrated a new form of magnetism , termed "p-wave magnetism." Physicists have long observed that electrons of atoms in regular ferromagnets share the same orientation of "spin," like so many tiny compasses pointing in the same direction. This spin alignment generates a magnetic field, which gives a ferromagnet its inherent magnetism. Electrons belonging to magnetic atoms in an antiferromagnet also have spin, although these spins alternate, with electrons orbiting neighboring atoms aligning their spins antiparalle...