Skip to main content

Physics Revelation Could Mean We're All Living in a Simulation

 



The scent of coffee. The clarity of sunlight dappling through the trees. The howl of the wind in the dark of night.

All this, according to a philosophical argument published in 2003, could be no more real than pixels on a screen. It's called the simulation hypothesis, and it proposes that if humanity lives to see a day it can repeatedly simulate the Universe using come kind of computer, chances are we are living in one of those many simulations.


If so, everything we experience is a model of something else, removed from some kind of reality.

It's more of a thought experiment than anything – but scientists do love poking it to see if anything squirms. And a new poke has hinted at something squirming.

The second law of infodynamics devised by University of Portsmouth physicist Melvin Vopson and mathematician Serban Lepadatu from the Jeremiah Horrocks Institute for Mathematics, Physics and Astronomy in the UK supports the notion that all of this is nothing more than a sophisticated model on a rather fancy computer.

"The 2022 discovery of the second law of information dynamics (infodynamics) facilitates new and interesting research tools at the intersection between physics and information," Vopson writes in a new paper published in AIP Physics.

"In this article, we re-examine the second law of infodynamics and its applicability to digital information, genetic information, atomic physics, mathematical symmetries, and cosmology, and we provide scientific evidence that appears to underpin the simulated universe hypothesis."


Vopson's and Lepadatu's second law of infodynamics is based on the second law of thermodynamics, which states that any naturally occurring process in the Universe will result in a loss of energy and increase in a system's measure of disorder, or entropy.


Vopson, who has proposed that information could in fact be considered a form of matter, expected that the same would be true of information systems; that, over time, its own kind of disorder ought to increase over time as well.

However, studying two different information systems – digital data storage and an RNA genome – he found that this was not the case. The second law of infodynamics requires 'information entropy' to either remain at the same level, or even decrease over time.

"I knew then that this revelation had far-reaching implications across various scientific disciplines," Vopson says. "What I wanted to do next is put the law to the test and see if it could further support the simulation hypothesis by moving it on from the philosophical realm to mainstream science."

In his new paper, the physicist explores what this new law means for a range of fields, such as genetics, cosmology, atomic physics, symmetry… and, of course, the simulation hypothesis.



International Research Conference on High Energy Physics and Computational Science

Submit Your Conference Abstract: https://x-i.me/hepcon
Submit Your Award Nomination: https://x-i.me/hepnom


 

Get Connected Here:
==================

                                            tumblr : https://www.tumblr.com/blog/high-energy-physics  

                                          Mail id : hep@sciencefather.com


#photons #physics #light #science #astronomy #d #anycubic #universe #quantumphysics #photon #dprinting #quantummechanics #astrophysics #quantum #sun #energy #space #particles #photography #l #physicist #blackhole #einstein #nasa #resin #physicsfun #dprint #k #warhammer #electrons

Comments

Popular posts from this blog

"Explore the Fourth Dimension"

Fourth Dimension   The fourth dimension is a fascinating concept that has captured the imaginations of scientists, mathematicians, and artists for centuries. Unlike our three-dimensional world, which is limited by the linear flow of time, the fourth dimension is a realm of space and time that exists beyond our everyday experience. One way to visualize the fourth dimension is through the use of a hypercube, also known as a tesseract. A hypercube is a cube within a cube, with additional lines and edges connecting the vertices of the two cubes. It's impossible to construct in our three-dimensional world, but it provides a glimpse into what the fourth dimension might look like. Another way to understand the fourth dimension is through the concept of a wormhole, a theoretical passage through space-time that connects two distant points in the universe. A wormhole is like a shortcut through the fabric of space-time, allowing us to travel vast distances in an instant. While there is no de...

Quantum Tunneling Breakthrough: Technion Scientists Move Atoms With Precision

In a groundbreaking experiment at the Technion Faculty of Physics , researchers demonstrated the transfer of atoms via quantum tunneling using optical tweezers. This novel method, which strategically avoids trapping atoms in the middle tweezer, represents a notable stride toward innovative quantum technologies. Quantum Tunneling in Optical Tweezers A new experiment at the Technion Faculty of Physics demonstrates how atoms can be transferred between locations using quantum tunneling with optical tweezers. Led by Prof. Yoav Sagi and doctoral student Yanay Florshaim from the Solid State Institute, this research was published recently in Science Advances. The experiment relies on optical tweezers , a powerful tool that uses focused laser beams to trap and manipulate tiny particles like atoms, molecules, and even living cells. Here’s how it works: when light interacts with matter, it creates a force proportional to the light’s intensity. This force, though too weak to impact larger objects,...

Physicists observe a new form of magnetism for the first time

MIT physicists have demonstrated a new form of magnetism that could one day be harnessed to build faster, denser, and less power-hungry " spintronic " memory chips. The new magnetic state is a mash-up of two main forms of magnetism: the ferromagnetism of everyday fridge magnets and compass needles, and antiferromagnetism, in which materials have magnetic properties at the microscale yet are not macroscopically magnetized. Now, the MIT team has demonstrated a new form of magnetism , termed "p-wave magnetism." Physicists have long observed that electrons of atoms in regular ferromagnets share the same orientation of "spin," like so many tiny compasses pointing in the same direction. This spin alignment generates a magnetic field, which gives a ferromagnet its inherent magnetism. Electrons belonging to magnetic atoms in an antiferromagnet also have spin, although these spins alternate, with electrons orbiting neighboring atoms aligning their spins antiparalle...