The scent of coffee. The clarity of sunlight dappling through the trees. The howl of the wind in the dark of night.
All this, according to a philosophical argument published in 2003, could be no more real than pixels on a screen. It's called the simulation hypothesis, and it proposes that if humanity lives to see a day it can repeatedly simulate the Universe using come kind of computer, chances are we are living in one of those many simulations.
If so, everything we experience is a model of something else, removed from some kind of reality.
It's more of a thought experiment than anything – but scientists do love poking it to see if anything squirms. And a new poke has hinted at something squirming.
The second law of infodynamics devised by University of Portsmouth physicist Melvin Vopson and mathematician Serban Lepadatu from the Jeremiah Horrocks Institute for Mathematics, Physics and Astronomy in the UK supports the notion that all of this is nothing more than a sophisticated model on a rather fancy computer.
"The 2022 discovery of the second law of information dynamics (infodynamics) facilitates new and interesting research tools at the intersection between physics and information," Vopson writes in a new paper published in AIP Physics.
"In this article, we re-examine the second law of infodynamics and its applicability to digital information, genetic information, atomic physics, mathematical symmetries, and cosmology, and we provide scientific evidence that appears to underpin the simulated universe hypothesis."
Vopson's and Lepadatu's second law of infodynamics is based on the second law of thermodynamics, which states that any naturally occurring process in the Universe will result in a loss of energy and increase in a system's measure of disorder, or entropy.
Vopson, who has proposed that information could in fact be considered a form of matter, expected that the same would be true of information systems; that, over time, its own kind of disorder ought to increase over time as well.
However, studying two different information systems – digital data storage and an RNA genome – he found that this was not the case. The second law of infodynamics requires 'information entropy' to either remain at the same level, or even decrease over time.
"I knew then that this revelation had far-reaching implications across various scientific disciplines," Vopson says. "What I wanted to do next is put the law to the test and see if it could further support the simulation hypothesis by moving it on from the philosophical realm to mainstream science."
In his new paper, the physicist explores what this new law means for a range of fields, such as genetics, cosmology, atomic physics, symmetry… and, of course, the simulation hypothesis.
International Research Conference on High Energy Physics and Computational Science
Submit Your Conference Abstract: https://x-i.me/hepconSubmit Your Award Nomination: https://x-i.me/hepnom
Get Connected Here:
==================Facebook : https://x-i.me/yHa5Twitter : https://twitter.com/PsciencefatherPinterest : https://in.pinterest.com/victoriaanisa1/Instagram : https://www.instagram.com/victoriaanisa1/
tumblr : https://www.tumblr.com/blog/high-energy-physics
Mail id : hep@sciencefather.com
#photons #physics #light #science #astronomy #d #anycubic #universe #quantumphysics #photon #dprinting #quantummechanics #astrophysics #quantum #sun #energy #space #particles #photography #l #physicist #blackhole #einstein #nasa #resin #physicsfun #dprint #k #warhammer #electrons
No comments:
Post a Comment