Skip to main content

Theoretical and experimental physics team up in the search for particle flavor change

 



An important recent discovery in physics came from measuring neutrinos—neutral, weakly interacting particles—produced by the sun. Nuclear reactions in the sun produce only electron neutrinos. According to the standard model, neutrinos come in three distinct "flavors" (electron, mu, and tau). Scientists originally thought neutrinos to be massless, but they recently discovered that neutrinos have mass.

An interesting consequence of this discovery is that neutrinos can change flavor. This means two-thirds of the neutrinos reaching Earth from the sun are not electron neutrinos. Now, advances in theory and experiment are helping scientists to determine whether the neutrinos' charged counterparts—electrons, muons, and tauons—can also change flavor. In two new experiments, scientists will search for a negatively charged muon, the electron's more massive cousin, decaying into an electron. This would violate the standard model. These experiments, Mu2e at Fermilab and COMET at J-PARC in Japan, will be able to detect electrons from this process even if the conversion probability is only 1 in 100 quadrillion. This makes these experiments 10,000 times more sensitive than previous searches. Recent theoretical work has identified new physics information available in these experiments and how to measure it. The results may tell scientists about interactions that might exist beyond the standard model. Muons are captured in a nuclear target, where they bind—like electrons—in an atom. When muon-to-electron conversion occurs, scientists can only observe those electrons that leave the nucleus in its lowest-energy state. These electrons have a precise energy, simplifying their detection and eliminating backgrounds if only they are selected for measurement. Because the nucleus remains in its ground state, it restricts what can be measured. Researchers at the University of California, Berkeley, Lawrence Berkeley National Laboratory, Shanghai Jiao Tong University, and the University of Massachusetts, Amherst found that with this filter in place, experimentalists can measure six independent observables if researchers use a set of nuclear targets carefully selected for their properties. Nuclear theory can help guide this selection, as it can predict which target properties will enhance a given observable. The six observables represent the "fingerprint" of the new physics and define a program of measurements that teams like Mu2e and COMET can complete. Once this program is carried out, particle theorists will have six new clues about possible physics missing from the standard model.



International Research Conference on High Energy Physics

Submit Your Conference Abstract: https://x-i.me/hepcon
Submit Your Award Nomination: https://x-i.me/hepnom


 

Get Connected Here:
==================

                                            tumblr : https://www.tumblr.com/blog/high-energy-physics  




#particlephysics #physics #quantumphysics #science #theoreticalphysics #physicslovers #physicsfun #physicsmemes #astrophysics #physicsstudent #physicsclass #physicist #physicsjokes #physicsoftheuniverse #physicslove #nuclearphysics #astronomy #physicsfacts #physicsmajor #nasa #physicsisfun #quantummechanics #physicsnotes #universe #physicslab #cosmos #physicsproject #space #physicstoy #blackhole

Comments

Popular posts from this blog

"Explore the Fourth Dimension"

Fourth Dimension   The fourth dimension is a fascinating concept that has captured the imaginations of scientists, mathematicians, and artists for centuries. Unlike our three-dimensional world, which is limited by the linear flow of time, the fourth dimension is a realm of space and time that exists beyond our everyday experience. One way to visualize the fourth dimension is through the use of a hypercube, also known as a tesseract. A hypercube is a cube within a cube, with additional lines and edges connecting the vertices of the two cubes. It's impossible to construct in our three-dimensional world, but it provides a glimpse into what the fourth dimension might look like. Another way to understand the fourth dimension is through the concept of a wormhole, a theoretical passage through space-time that connects two distant points in the universe. A wormhole is like a shortcut through the fabric of space-time, allowing us to travel vast distances in an instant. While there is no de...

Physicists observe a new form of magnetism for the first time

MIT physicists have demonstrated a new form of magnetism that could one day be harnessed to build faster, denser, and less power-hungry " spintronic " memory chips. The new magnetic state is a mash-up of two main forms of magnetism: the ferromagnetism of everyday fridge magnets and compass needles, and antiferromagnetism, in which materials have magnetic properties at the microscale yet are not macroscopically magnetized. Now, the MIT team has demonstrated a new form of magnetism , termed "p-wave magnetism." Physicists have long observed that electrons of atoms in regular ferromagnets share the same orientation of "spin," like so many tiny compasses pointing in the same direction. This spin alignment generates a magnetic field, which gives a ferromagnet its inherent magnetism. Electrons belonging to magnetic atoms in an antiferromagnet also have spin, although these spins alternate, with electrons orbiting neighboring atoms aligning their spins antiparalle...

Quantum Tunneling Breakthrough: Technion Scientists Move Atoms With Precision

In a groundbreaking experiment at the Technion Faculty of Physics , researchers demonstrated the transfer of atoms via quantum tunneling using optical tweezers. This novel method, which strategically avoids trapping atoms in the middle tweezer, represents a notable stride toward innovative quantum technologies. Quantum Tunneling in Optical Tweezers A new experiment at the Technion Faculty of Physics demonstrates how atoms can be transferred between locations using quantum tunneling with optical tweezers. Led by Prof. Yoav Sagi and doctoral student Yanay Florshaim from the Solid State Institute, this research was published recently in Science Advances. The experiment relies on optical tweezers , a powerful tool that uses focused laser beams to trap and manipulate tiny particles like atoms, molecules, and even living cells. Here’s how it works: when light interacts with matter, it creates a force proportional to the light’s intensity. This force, though too weak to impact larger objects,...