Skip to main content

Researchers advance topological superconductors for quantum computing

 



Quantum computers process information using quantum bits, or qubits, based on fragile, short-lived quantum mechanical states. To make qubits robust and tailor them for applications, researchers from the Department of Energy's Oak Ridge National Laboratory sought to create a new material system.


"We are pursuing a new route to create quantum computers using novel materials," said ORNL materials scientist Robert Moore, who co-led a study published in Advanced Materials with ORNL colleague Matthew Brahlek, who is also a materials scientist.

They coupled a superconductor, which offers no resistance to electrical current, with a topological insulator, which has electrically conductive surfaces but an insulating interior. The result is an atomically sharp interface between crystalline thin films with different symmetric arrangements of atoms. The novel interface that they designed and engineered may give rise to exotic physics and host a unique quantum building block with potential as a superior qubit.

"The idea is to make qubits with materials that have more robust quantum mechanical properties," Moore said. "What is important is that we have learned how to control the electronic structure of the topological insulator and the superconductor independently, so that we can tailor the electronic structure at that interface. This had never been done."

Controlling the electronic structure on both sides of an interface may create something called Majorana particles inside the material. "In nature, we have particles and antiparticles, for example electrons and positrons, which annihilate each other when they come in contact. A Majorana particle is its own antiparticle," Moore said. In 1937 Ettore Majorana predicted the existence of these exotic particles, whose existence remains to be proven.

In 2008, theorical physicists Liang Fu and Charlie Kane of the University of Pennsylvania proposed that creating a novel interface between a topological insulator with a superconductor would generate topological superconductivity, a new phase of matter predicted to host Majorana particles.


International Research Conference on High Energy Physics and Computational Science

Submit Your Conference Abstract: https://x-i.me/hepcon
Submit Your Award Nomination: https://x-i.me/hepnom


 

Get Connected Here:
==================

                                            tumblr : https://www.tumblr.com/blog/high-energy-physics  



#photons #physics #light #science #astronomy #d #anycubic #universe #quantumphysics #photon #dprinting #quantummechanics #astrophysics #quantum #sun #energy #space #particles #photography #l #physicist #blackhole #einstein #nasa #resin #physicsfun #dprint #k #warhammer #electrons



Comments

Popular posts from this blog

Physicists observe a new form of magnetism for the first time

MIT physicists have demonstrated a new form of magnetism that could one day be harnessed to build faster, denser, and less power-hungry " spintronic " memory chips. The new magnetic state is a mash-up of two main forms of magnetism: the ferromagnetism of everyday fridge magnets and compass needles, and antiferromagnetism, in which materials have magnetic properties at the microscale yet are not macroscopically magnetized. Now, the MIT team has demonstrated a new form of magnetism , termed "p-wave magnetism." Physicists have long observed that electrons of atoms in regular ferromagnets share the same orientation of "spin," like so many tiny compasses pointing in the same direction. This spin alignment generates a magnetic field, which gives a ferromagnet its inherent magnetism. Electrons belonging to magnetic atoms in an antiferromagnet also have spin, although these spins alternate, with electrons orbiting neighboring atoms aligning their spins antiparalle...

new research in qauntum physics

         VISIT:https: //hep-conferences.sciencefather.com/          N ew research in  qauntum physics.                                                    Alphabet Has a Second, Secretive Quantum Computing Team Recent research in quantum physics includes the development of quantum computers, which are expected to be much more powerful than conventional computers and could revolutionize many aspects of technology, such as artificial intelligence and cryptography. Other research includes the development of quantum sensors for a variety of applications, including medical diagnostics, and the study of quantum entanglement and its potential to enable quantum computing and secure communication. Additionally, research is being conducted into the applications of quantum mechanics in materials science, such as unde...

Freezing light? Italian scientists froze fastest thing in universe, here’s how

In a rare occurrence, physics made it possible to control the fastest travelling element - light. Italian scientists have managed to freeze the light, as per reports. A recent study published in a British weekly journal reportedly revealed that light can exhibit ‘ supersolid behavior ’ a unique state of matter that flows without friction while retaining a solid-like structure. The research, led by Antonio Gianfate from CNR Nanotec and Davide Nigro from the University of Pavia, marks a significant step in understanding supersolidity in light. The scientists described their findings as “just the beginning” of this exploration, as per reports. In what can be termed as ‘manipulating photons under controlled quantum conditions ’, the scientists demonstrated that light, too, can exhibit this behaviour. (A photon is a bundle of electromagnetic energy which is massless, and travel at the speed of light) How did scientists freeze light? As we know, freezing involves lowering a liquid’s tempera...