Skip to main content

Neutrino-Photon Interactions: Unlocking the Mysteries of Particle Physics


 New research has discovered new interactions between neutrinos and photons, potentially shedding light on mysteries in particle physics and solar phenomena.


HOMEPHYSICS NEWS Neutrino-Photon Interactions: Unlocking the Mysteries of Particle Physics TOPICS:Hokkaido UniversityNeutrinosParticle Physics By HOKKAIDO UNIVERSITY SEPTEMBER 13, 2023 Abstract Particle Physics Concept Art Illustration New research has discovered new interactions between neutrinos and photons, potentially shedding light on mysteries in particle physics and solar phenomena. Kali Uchis Signed Red Moon in Venus... Pause Unmute Remaining Time -0:27 Fullscreen Kali Uchis Signed Red Moon in Venus Unboxing Elusive fundamental particles called neutrinos are predicted to interact unexpectedly with photons under extreme conditions. Research at Hokkaido University has revealed that elusive particles called neutrinos can interact with photons, the fundamental particles of light and other electromagnetic radiation, in ways not previously detected. The findings from Kenzo Ishikawa, Professor Emeritus at Hokkaido University, with colleague Yutaka Tobita, lecturer at Hokkaido University of Science, were published in the journal Physics Open. “Our results are important for understanding the quantum mechanical interactions of some of the most fundamental particles of matter,” says Ishikawa. “They may also help reveal details of currently poorly understood phenomena in the sun and other stars.” Mystery of Neutrinos Neutrinos are one of the most mysterious fundamental particles of matter. They are extremely difficult to study because they barely interact at all with other particles. They are electrically neutral and have almost no mass. Yet they are highly abundant, with vast numbers constantly streaming from the sun and passing through the Earth, and indeed ourselves, with barely any effect. Learning more about neutrinos is important for testing and perhaps refining our current understanding of particle physics, known as The Standard Model.


HOMEPHYSICS NEWS Neutrino-Photon Interactions: Unlocking the Mysteries of Particle Physics TOPICS:Hokkaido UniversityNeutrinosParticle Physics By HOKKAIDO UNIVERSITY SEPTEMBER 13, 2023 Abstract Particle Physics Concept Art Illustration New research has discovered new interactions between neutrinos and photons, potentially shedding light on mysteries in particle physics and solar phenomena. Kali Uchis Signed Red Moon in Venus... Pause Unmute Remaining Time -0:21 Fullscreen Kali Uchis Signed Red Moon in Venus Unboxing Elusive fundamental particles called neutrinos are predicted to interact unexpectedly with photons under extreme conditions. Research at Hokkaido University has revealed that elusive particles called neutrinos can interact with photons, the fundamental particles of light and other electromagnetic radiation, in ways not previously detected. The findings from Kenzo Ishikawa, Professor Emeritus at Hokkaido University, with colleague Yutaka Tobita, lecturer at Hokkaido University of Science, were published in the journal Physics Open. “Our results are important for understanding the quantum mechanical interactions of some of the most fundamental particles of matter,” says Ishikawa. “They may also help reveal details of currently poorly understood phenomena in the sun and other stars.” Mystery of Neutrinos Neutrinos are one of the most mysterious fundamental particles of matter. They are extremely difficult to study because they barely interact at all with other particles. They are electrically neutral and have almost no mass. Yet they are highly abundant, with vast numbers constantly streaming from the sun and passing through the Earth, and indeed ourselves, with barely any effect. Learning more about neutrinos is important for testing and perhaps refining our current understanding of particle physics, known as The Standard Model. Total Solar Eclipse With Solar Corona A total solar eclipse, with the solar corona visible. “Under normal ‘classical’ conditions, neutrinos will not interact with photons,” explains Ishikawa “We have revealed, however, how neutrinos and photons can be induced to interact in the uniform magnetic fields of the extremely large scale—as large as 103 km—found in the form of matter known as plasma, which occurs around stars.” Plasma is an ionized gas, meaning that all of its atoms have acquired either an excess or a deficiency of electrons, making them negatively or positively charged ions, rather than the neutral atoms that can occur under everyday conditions on Earth. Electroweak Hall Effect and Its Implications The interaction described by the researchers involves a theoretical phenomenon called the electroweak Hall effect. This is an interaction of electricity and magnetism under extreme conditions where two of the fundamental forces of nature—the electromagnetic and the weak forces—merge into the electro-weak force. It is a theoretical concept, expected to apply only in the very high energy conditions of the early universe or within collisions in particle accelerators. The research has derived a mathematical description of this unexpected neutrino-photon interaction, known as the Lagrangian. This describes everything known about the energy states of the system.



International Research Conference on High Energy Physics and Computational Science

Submit Your Conference Abstract: https://x-i.me/hepcon
Submit Your Award Nomination: https://x-i.me/hepnom


 

Get Connected Here:
==================

                                            tumblr : https://www.tumblr.com/blog/high-energy-physics  



#photons #physics #light #science #astronomy #d #anycubic #universe #quantumphysics #photon #dprinting #quantummechanics #astrophysics #quantum #sun #energy #space #particles #photography #l #physicist #blackhole #einstein #nasa #resin #physicsfun #dprint #k #warhammer #electrons

Comments

Popular posts from this blog

Physicists observe a new form of magnetism for the first time

MIT physicists have demonstrated a new form of magnetism that could one day be harnessed to build faster, denser, and less power-hungry " spintronic " memory chips. The new magnetic state is a mash-up of two main forms of magnetism: the ferromagnetism of everyday fridge magnets and compass needles, and antiferromagnetism, in which materials have magnetic properties at the microscale yet are not macroscopically magnetized. Now, the MIT team has demonstrated a new form of magnetism , termed "p-wave magnetism." Physicists have long observed that electrons of atoms in regular ferromagnets share the same orientation of "spin," like so many tiny compasses pointing in the same direction. This spin alignment generates a magnetic field, which gives a ferromagnet its inherent magnetism. Electrons belonging to magnetic atoms in an antiferromagnet also have spin, although these spins alternate, with electrons orbiting neighboring atoms aligning their spins antiparalle...

"Explore the Fourth Dimension"

Fourth Dimension   The fourth dimension is a fascinating concept that has captured the imaginations of scientists, mathematicians, and artists for centuries. Unlike our three-dimensional world, which is limited by the linear flow of time, the fourth dimension is a realm of space and time that exists beyond our everyday experience. One way to visualize the fourth dimension is through the use of a hypercube, also known as a tesseract. A hypercube is a cube within a cube, with additional lines and edges connecting the vertices of the two cubes. It's impossible to construct in our three-dimensional world, but it provides a glimpse into what the fourth dimension might look like. Another way to understand the fourth dimension is through the concept of a wormhole, a theoretical passage through space-time that connects two distant points in the universe. A wormhole is like a shortcut through the fabric of space-time, allowing us to travel vast distances in an instant. While there is no de...

Green comet to pass Earth, won't be back for another 50,000 years

   visit:  https://hep-conferences.sciencefather.com/ After travelling from the icy reaches of our Solar System it will come closest to the Sun on January 12 and pass nearest to Earth on February 1.   A newly discovered comet could be visible to the naked eye as it shoots past Earth and the Sun in the coming weeks for the first time in 50,000 years, astronomers have said. The comet is called C/2022 E3 (ZTF) after the Zwicky Transient Facility, which first spotted it passing Jupiter in March last year. After travelling from the icy reaches of our Solar System it will come closest to the Sun on January 12 and pass nearest to Earth on February 1. It will be easy to spot with a good pair of binoculars and likely even with the naked eye, provided the sky is not too illuminated by city lights or the Moon. The comet "will be brightest when it is closest to the Earth", Thomas Prince, a physics professor at the California Institute of Technology who works at the Zwicky Transi...