Skip to main content

Physicists synthesize single-crystalline iron in the form likely found in Earth's core

 




A team of physicists and geologists at CEA DAM-DIF and Universit´e Paris-Saclay, working with a colleague from ESRF, BP220, F-38043 Grenoble Cedex and another from the European Synchrotron Radiation Facility, has succeeded in synthesizing a single-crystalline iron in a form that iron has in the Earth's core.


In their paper published in the journal Physical Review Letters, the group describes how they used an experimental approach to synthesize pure single-crystalline ε-iron and possible uses for the material In trying to understand Earth's internal composition, scientists have had to rely mostly on seismological data. Such studies have led scientists to believe that the core is solid and that it is surrounded by liquid. But questions have remained. For example, back in the 1980s, studies revealed that seismic waves travel faster through the Earth when traveling pole to pole versed equator to equator, and no one could explain why. Most theories have suggested it is likely because of the way the iron in the core is structured. Most in the field agree that if the type of iron that exists in the core could be made and tested at the surface, such questions could be answered with a reasonable degree of certainty. But doing so has proven to be challenging due to fracturing during synthesis. In this new effort, the research team has found a way around such problems and in so doing have found a way to synthesize a type of iron that can be used for testing the properties of iron in Earth's core. The work by the team involved compressing a sample of α-iron at 7GPa. Doing so caused its temperature to rise to approximately 800 Kelvin. That led to the transformation of its structure into γ-iron crystals. More pressure pushed the γ-iron to form into ε-structure iron—single crystals that are believed to be the same types as those in the iron at Earth's core. The research team conducted experiments that showed the directionally-dependent elasticity of their ε-iron behaving as iron does in the Earth's core, with vibrations traveled faster along one axis of a sphere than along the other. They suggest their approach can be used for generating iron samples for testing theories regarding the makeup of Earth's core.




International Research Conference on High Energy Physics

Submit Your Conference Abstract: https://x-i.me/hepcon
Submit Your Award Nomination: https://x-i.me/hepnom


 

Get Connected Here:
==================

                                            tumblr : https://www.tumblr.com/blog/high-energy-physics  




#oppenheimer #christophernolan #cillianmurphy #emilyblunt #robertdowneyjr #ramimalek #film #florencepugh #mattdamon #tenet #batman #dunkirk #nolan #peakyblinders #interstellar #bennysafdie #universalpictures #ironman #trending #imax #mattdemon #filmmaking #worldwar #filmmaker #artist #filmmakers #darkknight #cinematography #losalamos #instagood



Comments

Popular posts from this blog

Physicists observe a new form of magnetism for the first time

MIT physicists have demonstrated a new form of magnetism that could one day be harnessed to build faster, denser, and less power-hungry " spintronic " memory chips. The new magnetic state is a mash-up of two main forms of magnetism: the ferromagnetism of everyday fridge magnets and compass needles, and antiferromagnetism, in which materials have magnetic properties at the microscale yet are not macroscopically magnetized. Now, the MIT team has demonstrated a new form of magnetism , termed "p-wave magnetism." Physicists have long observed that electrons of atoms in regular ferromagnets share the same orientation of "spin," like so many tiny compasses pointing in the same direction. This spin alignment generates a magnetic field, which gives a ferromagnet its inherent magnetism. Electrons belonging to magnetic atoms in an antiferromagnet also have spin, although these spins alternate, with electrons orbiting neighboring atoms aligning their spins antiparalle...

Green comet to pass Earth, won't be back for another 50,000 years

   visit:  https://hep-conferences.sciencefather.com/ After travelling from the icy reaches of our Solar System it will come closest to the Sun on January 12 and pass nearest to Earth on February 1.   A newly discovered comet could be visible to the naked eye as it shoots past Earth and the Sun in the coming weeks for the first time in 50,000 years, astronomers have said. The comet is called C/2022 E3 (ZTF) after the Zwicky Transient Facility, which first spotted it passing Jupiter in March last year. After travelling from the icy reaches of our Solar System it will come closest to the Sun on January 12 and pass nearest to Earth on February 1. It will be easy to spot with a good pair of binoculars and likely even with the naked eye, provided the sky is not too illuminated by city lights or the Moon. The comet "will be brightest when it is closest to the Earth", Thomas Prince, a physics professor at the California Institute of Technology who works at the Zwicky Transi...

"Explore the Fourth Dimension"

Fourth Dimension   The fourth dimension is a fascinating concept that has captured the imaginations of scientists, mathematicians, and artists for centuries. Unlike our three-dimensional world, which is limited by the linear flow of time, the fourth dimension is a realm of space and time that exists beyond our everyday experience. One way to visualize the fourth dimension is through the use of a hypercube, also known as a tesseract. A hypercube is a cube within a cube, with additional lines and edges connecting the vertices of the two cubes. It's impossible to construct in our three-dimensional world, but it provides a glimpse into what the fourth dimension might look like. Another way to understand the fourth dimension is through the concept of a wormhole, a theoretical passage through space-time that connects two distant points in the universe. A wormhole is like a shortcut through the fabric of space-time, allowing us to travel vast distances in an instant. While there is no de...