Skip to main content

A Pair of New Tetraquarks

 



CERN’s Large Hadron Collider has detected the signals of two new four-quark states that are unusual because of their charges and their quark compositions.

In the protons and neutrons that make up everyday matter, all the hadrons are of the three-quark variety. But quarks can also assemble in larger numbers, showing up fleetingly in particle colliders in groups of four (see Synopsis: New Tetraquark Spotted in Electron-Positron Collisions) or five (see Synopsis: Pentaquark Discovery Confirmed). Now the Large Hadron Collider beauty (LHCb) Collaboration at CERN’s LHC has discovered two new four-quark particles. The quark compositions and charges of these tetraquarks make them good for testing theoretical models.

The LHC recently began its third operational run, but this new result is drawn from data gathered during runs 1 and 2. The LHCb Collaboration analyzed detector tracks left by charged kaons and pions, which are the ultimate products of proton–proton collisions. From these tracks, the team reconstructed decay chains in which neutral and positively charged B mesons created by the collisions decay into kaons and pions via intermediate D-meson states. The researchers found that describing the dynamics of one of these decay chains required that the system go through a pair of tetraquark states prior to forming a D meson.  In the past two decades, dozens of tetraquark candidates have been observed at the LHC and elsewhere. The newly discovered states stand out, as they are rare examples of “open-charm” mesons, in which a charm quark is present without a corresponding charm antiquark. These particles provide an opportunity to test the rules governing hadron formation. One of the two tetraquarks also includes the first observed meson with a double charge. As the other tetraquark is neutral, studying how the differing charge of the two systems affects their properties may aid in understanding their structures.





International Research Conference on High Energy Physics

Submit Your Conference Abstract: https://x-i.me/hepcon
Submit Your Award Nomination: https://x-i.me/hepnom


 

Get Connected Here:
==================

                                            tumblr : https://www.tumblr.com/blog/high-energy-physics  



#Kaon #Meson #ParticlePhysics #SubatomicParticles #CPViolation #Quarks #StrongForce #DecayModes #ParticleInteractions #Astrophysics #MatterAntimatterAsymmetry #ParticleCollisions #QuantumPhysics #NuclearForce #StrangeQuark




Comments

Popular posts from this blog

Physicists observe a new form of magnetism for the first time

MIT physicists have demonstrated a new form of magnetism that could one day be harnessed to build faster, denser, and less power-hungry " spintronic " memory chips. The new magnetic state is a mash-up of two main forms of magnetism: the ferromagnetism of everyday fridge magnets and compass needles, and antiferromagnetism, in which materials have magnetic properties at the microscale yet are not macroscopically magnetized. Now, the MIT team has demonstrated a new form of magnetism , termed "p-wave magnetism." Physicists have long observed that electrons of atoms in regular ferromagnets share the same orientation of "spin," like so many tiny compasses pointing in the same direction. This spin alignment generates a magnetic field, which gives a ferromagnet its inherent magnetism. Electrons belonging to magnetic atoms in an antiferromagnet also have spin, although these spins alternate, with electrons orbiting neighboring atoms aligning their spins antiparalle...

new research in qauntum physics

         VISIT:https: //hep-conferences.sciencefather.com/          N ew research in  qauntum physics.                                                    Alphabet Has a Second, Secretive Quantum Computing Team Recent research in quantum physics includes the development of quantum computers, which are expected to be much more powerful than conventional computers and could revolutionize many aspects of technology, such as artificial intelligence and cryptography. Other research includes the development of quantum sensors for a variety of applications, including medical diagnostics, and the study of quantum entanglement and its potential to enable quantum computing and secure communication. Additionally, research is being conducted into the applications of quantum mechanics in materials science, such as unde...

Scientists Discover New “Hall Effect” That Could Revolutionize Electronics

Scientists discovered a new Hall effect driven by spin currents in noncollinear antiferromagnets, offering a path to more efficient and resilient spintronic devices . A research team led by Colorado State University graduate student Luke Wernert and Associate Professor Hua Chen has identified a previously unknown type of Hall effect that could lead to more energy-efficient electronic devices . Their study, published in Physical Review Letters, was conducted in collaboration with graduate student Bastián Pradenas and Professor Oleg Tchernyshyov of Johns Hopkins University. The researchers uncovered evidence of a new property, dubbed the “Hall mass,” in a class of complex magnetic materials known as noncollinear antiferromagnets . The traditional Hall effect, discovered by Edwin Hall at Johns Hopkins in 1879, describes how an electric current is deflected sideways when subjected to an external magnetic field, generating a measurable voltage. This effect plays a crucial role in technologi...