Friday, July 28, 2023

A Pair of New Tetraquarks

 



CERN’s Large Hadron Collider has detected the signals of two new four-quark states that are unusual because of their charges and their quark compositions.

In the protons and neutrons that make up everyday matter, all the hadrons are of the three-quark variety. But quarks can also assemble in larger numbers, showing up fleetingly in particle colliders in groups of four (see Synopsis: New Tetraquark Spotted in Electron-Positron Collisions) or five (see Synopsis: Pentaquark Discovery Confirmed). Now the Large Hadron Collider beauty (LHCb) Collaboration at CERN’s LHC has discovered two new four-quark particles. The quark compositions and charges of these tetraquarks make them good for testing theoretical models.

The LHC recently began its third operational run, but this new result is drawn from data gathered during runs 1 and 2. The LHCb Collaboration analyzed detector tracks left by charged kaons and pions, which are the ultimate products of proton–proton collisions. From these tracks, the team reconstructed decay chains in which neutral and positively charged B mesons created by the collisions decay into kaons and pions via intermediate D-meson states. The researchers found that describing the dynamics of one of these decay chains required that the system go through a pair of tetraquark states prior to forming a D meson.  In the past two decades, dozens of tetraquark candidates have been observed at the LHC and elsewhere. The newly discovered states stand out, as they are rare examples of “open-charm” mesons, in which a charm quark is present without a corresponding charm antiquark. These particles provide an opportunity to test the rules governing hadron formation. One of the two tetraquarks also includes the first observed meson with a double charge. As the other tetraquark is neutral, studying how the differing charge of the two systems affects their properties may aid in understanding their structures.





International Research Conference on High Energy Physics

Submit Your Conference Abstract: https://x-i.me/hepcon
Submit Your Award Nomination: https://x-i.me/hepnom


 

Get Connected Here:
==================

                                            tumblr : https://www.tumblr.com/blog/high-energy-physics  



#Kaon #Meson #ParticlePhysics #SubatomicParticles #CPViolation #Quarks #StrongForce #DecayModes #ParticleInteractions #Astrophysics #MatterAntimatterAsymmetry #ParticleCollisions #QuantumPhysics #NuclearForce #StrangeQuark




Monday, July 24, 2023

ATLAS sets record precision on Higgs boson’s mass

 




In the 11 years since its discovery at the Large Hadron Collider (LHC), the Higgs boson has become a central avenue for shedding light on the fundamental structure of the Universe. Precise measurements of the properties of this special particle are among the most powerful tools physicists have to test the Standard Model, currently the theory that best describes the world of particles and their interactions. At the Lepton Photon Conference this week, the ATLAS collaboration reported how it has measured the mass of the Higgs boson more precisely than ever before. The mass of the Higgs boson is not predicted by the Standard Model and must therefore be determined by experimental measurement. Its value governs the strengths of the interactions of the Higgs boson with the other elementary particles as well as with itself. A precise knowledge of this fundamental parameter is key to accurate theoretical calculations which, in turn, allow physicists to confront their measurements of the Higgs boson’s properties with predictions from the Standard Model. Deviations from these predictions would signal the presence of new or unaccounted-for phenomena. The Higgs boson’s mass is also a crucial parameter driving the evolution and the stability of the Universe’s vacuum. The ATLAS and CMS collaborations have been making ever more precise measurements of the Higgs boson’s mass since the particle’s discovery. The new ATLAS measurement combines two results: a new Higgs boson mass measurement based on an analysis of the particle’s decay into two high-energy photons (the “diphoton channel”) and an earlier mass measurement based on a study of its decay into four leptons (the “four-lepton channel”). The new measurement in the diphoton channel, which combines analyses of the full ATLAS data sets from Runs 1 and 2 of the LHC, resulted in a mass of 125.22 billion electronvolts (GeV) with an uncertainty of only 0.14 GeV. With a precision of 0.11%, this diphoton-channel result is the most precise measurement to date of the Higgs boson’s mass from a single decay channel. Compared to the previous ATLAS measurement in this channel, the new result benefits both from the full ATLAS Run 2 data set, which reduced the statistical uncertainty by a factor of two, and from dramatic improvements to the calibration of photon energy measurements, which decreased the systematic uncertainty by almost a factor of four to 0.09 GeV. “The advanced and rigorous calibration techniques used in this analysis were critical for pushing the precision to such an unprecedented level,” says Stefano Manzoni, convener of the ATLAS electron-photon calibration subgroup. “Their development took several years and required a deep understanding of the ATLAS detector. They will also greatly benefit future analyses.” When the ATLAS researchers combined this new mass measurement in the diphoton channel with the earlier mass measurement in the four-lepton channel, they obtained a Higgs boson mass of 125.11 GeV with an uncertainty of 0.11 GeV. With a precision of 0.09%, this is the most precise measurement yet of this fundamental parameter. “This very precise measurement is the result of the relentless investment of the ATLAS collaboration in improving the understanding of our data,” says ATLAS spokesperson Andreas Hoecker. "Powerful reconstruction algorithms paired with precise calibrations are the determining ingredients of precision measurements. The new measurement of the Higgs boson’s mass adds to the increasingly detailed mapping of this critical new sector of particle physics."




International Research Conference on High Energy Physics

Submit Your Conference Abstract: https://x-i.me/hepcon
Submit Your Award Nomination: https://x-i.me/hepnom


 

Get Connected Here:
==================

                                            tumblr : https://www.tumblr.com/blog/high-energy-physics  



#particlephysics #physics #quantumphysics #science #theoreticalphysics #physicslovers #physicsfun #physicsmemes #astrophysics #physicsstudent #physicsclass #physicist #physicsjokes #physicsoftheuniverse #physicslove #nuclearphysics #astronomy #physicsfacts #physicsmajor #nasa #physicsisfun #quantummechanics #physicsnotes #universe #physicslab #cosmos #physicsproject #space #physicstoy #blackhole

Friday, July 21, 2023

Is the end of the 'particle era' of physics upon us?

 



The discovery of the Higgs Boson in 2012 represented a major turning point for particle physics marking the completion of what is known as the standard model of particle physics. Yet, the standard model can't answer every question in physics, thus, since this discovery at the Large Hadron Collider (LHC) physicists have searched for physics beyond the standard model and to determine what shape future physics will take.

A paper in The European Physical Journal H by Robert Harlander and Jean-Philippe Martinez of the Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University, Germany, and Gregor Schiemann from the Faculty of Humanities and Cultural Studies, Bergische Universität Wuppertal, Germany, considers the idea that particle physics may be on the verge of a new era of discovery and understanding in particle physics. The paper also considers the implications of the many possible scenarios for the future of high-energy physics. "Over the last century, the concept of the particle has emerged as fundamental in the field of physics," Martinez said. "It has undergone a significant evolution across time, which has opened up new ways for particle observation, and thus for the discovery of new particles. Currently, observing a particle requires its on-shell production." Martinez explained that a particle is called "on-shell" if its mass, energy and momentum combine in a certain way (E²=m²c²+p²c⁴). "In today's sense of discovery of a new particle, the latter is required to be on-shell in the experiment at least for a short time," he said. In the paper, Martinez and his fellow authors argue that all new particles could be too heavy for on-shell production, meaning particle physics will have to undergo yet another evolutionary step in particle observation and maybe even in the concept of the particle itself. "Particle physics is currently at a very special point in time," Martinez continued. "We still have to face the possibility that the age of particle discoveries as we know them today is over. We show that particle physics has gone through many evolutionary steps, and we claim that the next such step may be right ahead of us. However, as with previous developments, such a change will most likely come from within particle physics itself.



International Research Conference on High Energy Physics

Submit Your Conference Abstract: https://x-i.me/hepcon
Submit Your Award Nomination: https://x-i.me/hepnom


 

Get Connected Here:
==================

                                            tumblr : https://www.tumblr.com/blog/high-energy-physics  




#particlephysics #physics #quantumphysics #science #theoreticalphysics #physicslovers #physicsfun #physicsmemes #astrophysics #physicsstudent #physicsclass #physicist #physicsjokes #physicsoftheuniverse #physicslove #nuclearphysics #astronomy #physicsfacts #physicsmajor #nasa #physicsisfun #quantummechanics #physicsnotes #universe #physicslab #cosmos #physicsproject #space #physicstoy #blackhole

Tuesday, July 18, 2023

What does the Standard Model predict for the magnetic moment of the muon?

 


image: The high-energy physics community is eagerly anticipating the announcement of the world’s best measurement from the Fermilab Muon g-2 experiment later this year, while the Muon g-2 Theory Initiative is working to shore up the predicted value using new data and new lattice calculations.



Predicting the numerical value of the magnetic moment of the muon is one of the most challenging calculations in high-energy physics. Some physicists spend the bulk of their careers improving the calculation to greater precision. Why do physicists care about the magnetic properties of this particle? Because information from every particle and force is encoded in the numerical value of the muon’s magnetic moment. If we can both measure and predict this number to ultra-high precision, we can test whether the Standard Model of Elementary Particles is complete. Muons are identical to electrons except they are about 200 times more massive, are not stable, and disintegrate into electrons and neutrinos after a short time. At the simplest level, theory predicts that the muon’s magnetic moment, typically represented by the letter g, should equal 2. Any deviation from 2 can be attributed to quantum contributions from the muon’s interaction with other – known and unknown – particles and forces. Hence scientists are focused on predicting and measuring g-2. Several measurements of muon g-2 already exist. Scientists working on the Muon g-2 experiment at the U.S. Department of Energy’s Fermi National Accelerator Laboratory expect to announce later this year the result of the most precise measurement ever made of the muon’s magnetic moment. Simultaneously, a large number of scientists are working on improving the Standard Model prediction of the value of muon g-2. Several parts feed into this calculation, related to the electromagnetic force, the weak nuclear force and the strong nuclear force. The contribution from electromagnetic particles like photons and electrons is considered the most precise calculation in the world. The contribution from weakly interacting particles like neutrinos, W and Z bosons, and the Higgs boson is also well known. The most challenging part of the muon g-2 prediction stems from the contribution from strongly interacting particles like quarks and gluons; the equations governing their contribution are very complex. Even though the contributions from quarks and gluons are so complex, they are calculable, in principle, and several different approaches have been developed. One of these approaches evaluates the contributions by using experimental data related to the strongly interacting nuclear force. When electrons and positrons collide, they annihilate and can produce particles made of quarks and gluons like pions. Measuring how often pions are produced in these collisions is exactly the data needed to predict the strong nuclear contribution to muon g-2. For several decades, experiments at electron-positron colliders around the world have measured the contributions from quarks and gluons, including experiments in the US, Italy, Russia, China, and Japan. Results from all these experiments were compiled by a collaboration of experimental and theoretical physicists known as the Muon g-2 Theory Initiative. In 2020, this group announced the best Standard Model prediction for muon g-2 available at that time. Ten months later, the Muon g-2 collaboration at Fermilab unveiled the result of their first measurement. The comparison of the two indicated a large discrepancy between the experimental result and the Standard Model prediction. In other words, the comparison of the measurement with the Standard Model provided strong evidence that the Standard Model is not complete and muons could be interacting with yet undiscovered particles or forces. A second approach uses supercomputers to compute the complex equations for the quark and gluon interactions with a numerical approach called lattice gauge theory. While this is a well-tested method to compute the effects of the strong force, computing power has only recently become available to perform the calculations for muon g-2 to the required precision. As a result, lattice calculations published prior to 2021 were not sufficiently precise to test the Standard Model. However, a calculation published by one group of scientists in 2021, the Budapest-Marseille-Wuppertal collaboration, produced a huge surprise. Their prediction using lattice gauge theory was far from the prediction using electron-positron data. In the last few months, the landscape of predictions for the strong force contribution to muon g-2 has only become more complex. A new round of electron-positron data has come out from the SND and CMD3 collaborations. These are two experiments taking data at the VEPP-2000 electron-positron collider in Novosibirsk, Russia. A result from the SND collaboration agrees with the previous electron-positron data, while a result from the CMD3 collaboration disagrees with the previous data. What is going on? While there is no simple answer, there are concerted efforts by all the communities involved to better quantify the Standard Model prediction. The Lattice Gauge Theory community is working around the clock towards testing and scrutinizing the BMW collaboration’s prediction in independent lattice calculations with improved precision using different methods. The electron-positron collider community is working to identify possible reasons for the differences between the CMD3 result and all previous measurements. More importantly, the community is in the process of repeating these experimental measurements using much larger data sets. Scientists are also introducing new independent techniques to understand the strong-force contribution, such as a new experiment proposed at CERN called MUonE. What does this mean for muon g-2? The Fermilab Muon g-2 collaboration will release its next result, based on data taken in 2019 and 2020, later this year. Because of the large amount of additional data that is going into the new analysis, the Muon g-2 collaboration expects its result to be twice as precise as the first result from their experiment. But the current uncertainty in the predicted value makes it hard to use the new result to strengthen our previous indication that the Standard Model is incomplete and there are new particles and forces affecting muon g-2. What is next? The Fermilab Muon g-2 experiment concluded data taking this spring. It will still take a couple of years to analyze the entire data set, and the experiment expects to release its final result in 2025. At the same time, the Muon g-2 Theory Initiative is working to shore up the predicted value using new data and new lattice calculations that should also be available before 2025. It will be a very exciting showdown. In the meantime, the high-energy physics community is eagerly anticipating the announcement of the world’s best measurement from the Fermilab Muon g-2 experiment later this year.



International Research Conference on High Energy Physics

Submit Your Conference Abstract: https://x-i.me/hepcon
Submit Your Award Nomination: https://x-i.me/hepnom


 

Get Connected Here:
==================

                                            tumblr : https://www.tumblr.com/blog/high-energy-physics  





#particlephysics #physics #quantumphysics #science #theoreticalphysics #physicslovers #physicsfun #physicsmemes #astrophysics #physicsstudent #physicsclass #physicist #physicsjokes #physicsoftheuniverse #physicslove #nuclearphysics #astronomy #physicsfacts #physicsmajor #nasa #physicsisfun #quantummechanics #physicsnotes #universe #physicslab #cosmos #physicsproject #space #physicstoy #blackhole

Tuesday, July 4, 2023

IceCube detects high-energy neutrinos from within the Milky Way

 


 

High-energy neutrinos emerging from the Milky Way galaxy have been spotted for the first time. That is according to new findings from the IceCube Neutrino Observatory at the Amundsen–Scott South Pole Station that open a new avenue of multi-messenger astronomy by observing the Milky Way galaxy in particles rather than light.

Neutrinos are fundamental particles that have very small masses and barely interact with other matter, but they fill the universe with trillions passing harmlessly through your body every second.

Previously, neutrinos billions of times more energetic than those produced by fusion reactions within our Sun have been detected coming from extragalactic sources such as quasars. However, theory predicts that high-energy neutrinos should also be produced within the Milky Way.

When astronomers look at the plane of our galaxy, they see the Milky Way lit up with gamma-ray emissions that are produced when cosmic rays trapped by our galaxy’s magnetic field collide with atoms in interstellar space. These collisions should also produce high-energy neutrinos.

Researchers have now finally found convincing evidence for these neutrinos by using machine-learning techniques to sift through ten years of data from the IceCube Neutrino Observatory, which includes some 60 000 neutrino events. “[Just like gamma rays], the neutrinos that we observe are distributed throughout the galactic plane,” says Francis Halzen of the University of Wisconsin–Madison, who is IceCube’s principal investigator.

Cascade events

The IceCube detector is formed of a cubic kilometer of ice buried beneath the South Pole and strung through with 5160 optical sensors that watch for flashes of visible light on the rare occasions that a neutrino interacts with a molecule of water-ice. When a neutrino event occurs, the neutrino either leaves an elongated track or a “cascade event” whereby the neutrino’s energy is concentrated in a small, spherical volume within the ice.

When cosmic rays interact with matter in the interstellar medium they produce short-lived pions that quickly decay. “Charged pions decay into the neutrinos detected by IceCube and neutral pions decay into two gamma rays observed by [NASA’s] Fermi [Gamma-ray Space Telescope],” Halzen told Physics World.

The neutrinos had previously gone undetected because they were being drowned out by a background signal of neutrinos and muons caused by cosmic-ray interactions much closer to home, in Earth’s atmosphere.

This background leaves tracks that enter the detector, whereas the higher energy neutrinos from the Milky Way are more likely to produce cascade events. The machine-learning algorithm developed by IceCube scientists at TU Dortmund University in Germany was able to select only for cascade events, removing much of the local interference and allowing the signal from the Milky Way to stand out.

Although it is more difficult to obtain information about the direction a neutrino has come from in a cascade event, Halzen says that cascade events can be reconstructed with a precision of “five degrees or so”.  Although this precludes identifying specific sources of neutrinos in the Milky Way, Halzen says that it is sufficient to observe the radiation pattern from the galaxy and match it to the one observed of gamma rays by the Fermi space telescope.

The next step for the team is to try and identify specific sources of neutrinos in the Milky Way. This could be possible with the revamped IceCube, named Gen2, which will increase the size of the detector area to ten cubic kilometres of ice when it becomes fully operational by 2032.




International Research Conference on High Energy Physics

Submit Your Conference Abstract: https://x-i.me/hepcon
Submit Your Award Nomination: https://x-i.me/hepnom


 

Get Connected Here:
==================

                                            tumblr : https://www.tumblr.com/blog/high-energy-physics  





#particlephysics #physics #quantumphysics #science #theoreticalphysics #physicslovers #physicsfun #physicsmemes #astrophysics #physicsstudent #physicsclass #physicist #physicsjokes #physicsoftheuniverse #physicslove #nuclearphysics #astronomy #physicsfacts #physicsmajor #nasa #physicsisfun #quantummechanics #physicsnotes #universe #physicslab #cosmos #physicsproject #space #physicstoy #blackhole