Skip to main content

Researchers devise a new path toward 'quantum light'

 VISIT : https://hep-conferences.sciencefather.com/

Researchers devise a new path toward 'quantum light'




The researchers, from the University of Cambridge, along with colleagues from the U.S., Israel and Austria, developed a theory describing a new state of light, which has controllable quantum properties over a broad range of frequencies, up as high as X-ray frequencies. Their results are reported in the journal Nature Physics.

The world we observe around us can be described according to the laws of classical physics, but once we observe things at an atomic scale, the strange world of  takes over. Imagine a basketball: observing it with the , the basketball behaves according to the laws of classical physics. But the atoms that make up the basketball behave according to quantum physics instead.

"Light is no exception: from sunlight to , it can mostly be described using classical physics," said lead author Dr. Andrea Pizzi, who carried out the research while based at Cambridge's Cavendish Laboratory. "But at the micro and nanoscale so-called quantum fluctuations start playing a role and classical physics cannot account for them."

Pizzi, who is currently based at Harvard University, worked with Ido Kaminer's group at the Technion-Israel Institute of Technology and colleagues at MIT and the University of Vienna to develop a theory that predicts a new way of controlling the quantum nature of light.

"Quantum fluctuations make quantum light harder to study, but also more interesting: if correctly engineered, quantum fluctuations can be a resource," said Pizzi. "Controlling the state of quantum light could enable new techniques in microscopy and quantum computation."

One of the main techniques for generating light uses strong lasers. When a strong enough laser is pointed at a collection of emitters, it can rip some electrons away from the emitters and energize them. Eventually, some of these electrons recombine with the emitters they were extracted from, and the  they absorbed is released as light. This process turns the low-frequency input light into a high-frequency output radiation.

"The assumption has been that all these emitters are independent from one another, resulting in output light in which quantum fluctuations are pretty featureless," said Pizzi. "We wanted to study a system where the emitters are not independent, but correlated: the state of one particle tells you something about the state of another. In this case, the output light starts behaving very differently, and its quantum fluctuations become highly structured, and potentially more useful."

To solve this type of problem, known as a many body problem, the researchers used a combination of theoretical analysis and , where the output light from a group of correlated emitters could be described using quantum .

The theory, whose development was led by Pizzi and Alexey Gorlach from the Technion, demonstrates that controllable quantum light can be generated by correlated emitters with a strong laser. The method generates high-energy output light, and could be used to engineer the quantum-optical structure of X-rays.

"We worked for months to get the equations cleaner and cleaner, until we got to the point where we could describe the connection between the output light and the input correlations with just one compact equation. As a physicist, I find this beautiful," said Pizzi.

"Looking forward, we would like to collaborate with experimentalists to provide a validation of our predictions. On the theory side of things, our work suggests  as a resource for generating quantum light, a concept that we want to investigate more broadly, beyond the setup considered in this work."



#physics #science #chemistry #biology #astronomy #neet #space #physicsmemes #astrophysics #nasa #universe #maths #quantumphysics #engineering #physicsfun #math #mathematics #cosmos #scientist #sciencememes #education #memes #spacex #cosmology #facts #technology #sciencefacts #physicist #quantummechanics #mathmemes

Comments

Popular posts from this blog

new research in qauntum physics

         VISIT:https: //hep-conferences.sciencefather.com/          N ew research in  qauntum physics.                                                    Alphabet Has a Second, Secretive Quantum Computing Team Recent research in quantum physics includes the development of quantum computers, which are expected to be much more powerful than conventional computers and could revolutionize many aspects of technology, such as artificial intelligence and cryptography. Other research includes the development of quantum sensors for a variety of applications, including medical diagnostics, and the study of quantum entanglement and its potential to enable quantum computing and secure communication. Additionally, research is being conducted into the applications of quantum mechanics in materials science, such as unde...

Freezing light? Italian scientists froze fastest thing in universe, here’s how

In a rare occurrence, physics made it possible to control the fastest travelling element - light. Italian scientists have managed to freeze the light, as per reports. A recent study published in a British weekly journal reportedly revealed that light can exhibit ‘ supersolid behavior ’ a unique state of matter that flows without friction while retaining a solid-like structure. The research, led by Antonio Gianfate from CNR Nanotec and Davide Nigro from the University of Pavia, marks a significant step in understanding supersolidity in light. The scientists described their findings as “just the beginning” of this exploration, as per reports. In what can be termed as ‘manipulating photons under controlled quantum conditions ’, the scientists demonstrated that light, too, can exhibit this behaviour. (A photon is a bundle of electromagnetic energy which is massless, and travel at the speed of light) How did scientists freeze light? As we know, freezing involves lowering a liquid’s tempera...

Physicists observe a new form of magnetism for the first time

MIT physicists have demonstrated a new form of magnetism that could one day be harnessed to build faster, denser, and less power-hungry " spintronic " memory chips. The new magnetic state is a mash-up of two main forms of magnetism: the ferromagnetism of everyday fridge magnets and compass needles, and antiferromagnetism, in which materials have magnetic properties at the microscale yet are not macroscopically magnetized. Now, the MIT team has demonstrated a new form of magnetism , termed "p-wave magnetism." Physicists have long observed that electrons of atoms in regular ferromagnets share the same orientation of "spin," like so many tiny compasses pointing in the same direction. This spin alignment generates a magnetic field, which gives a ferromagnet its inherent magnetism. Electrons belonging to magnetic atoms in an antiferromagnet also have spin, although these spins alternate, with electrons orbiting neighboring atoms aligning their spins antiparalle...