Skip to main content

High energy physics in China

         

            visit: https://hep-conferences.sciencefather.com/

Professor Yifang Wang spoke to The Innovation Platform about high energy physics in China and the multifaceted work taking place at the Institute of High Energy Physics of the Chinese Academy of Sciences.

        China’s biggest laboratory for the study of particle physics, the Institute of High Energy Physics (IHEP) of the Chinese Academy of Sciences (CAS), hosts its main campus in Beijing. There, and within the other campuses and facilities, the team work to develop a better understanding of the Universe at the most fundamental level – from the smallest subatomic particles to the large-scale structure of the cosmos. 

                                                                         


Could you begin by providing a brief outline of your institute’s main goals and ambitions?


The Institute of High Energy Physics of the Chinese Academy of Sciences has some 1,500 employees and 500 students, and we work in three main areas. First, we conduct particle physics experiments. These are undertaken both at places like CERN in Europe, and in our own facilities (we have an e+e- collider located on our main campus, for instance).

The second area is accelerator-based science and technologies. This has seen us build the aforementioned e+e- collider, and we have also recently completed the construction of a spallation neutron source in the south of China in Guangdong, and we are building a new very high energy light source in the north part of Beijing.

The third area is space. We currently have one satellite that is used for X-ray astronomy, and we are planning two other major projects. One is another X-ray satellite, while the other will be used for cosmic ray experiments. We also have a large cosmic ray detector close to Tibet. This sits at a very high altitude – some 4,200m above sea level – and has an area of one square kilometre.

In addition, we have teams working on new applications for the technologies that we have developed in areas such as detectors, as well as X-ray technologies. Applications here include medical devices as well as for safety and inspection, the radiation treatment of materials, etc.

We have three main areas here. One is a tau-charm physics programme, which is running at our accelerator. Here, we are trying to study exotic hadrons – which are beyond the so-called ‘conventional’ quark model – and we are looking for hadrons made up of four, five, or even more quarks, as well as quark-gluon hybrids, and, finally, glueballs (a hypothetical composite particle). Furthermore, we are studying quantum chromodynamics in detail, and are working to develop a low energy precision measurement of standard model parameters.

We also have a neutrino physics programme, and are now finalising the Daya Bay Neutrino Experiment, based at the Daya Bay nuclear power plant in Guangdong province, which has been running since 2011. The project will be concluded by the end of the year.

As we wind Daya Bay down, many of the team have now moved on to work at the Jiangmen Underground Neutrino Observatory (JUNO), a much larger neutrino experiment which is currently under construction at a site that is near the city of Jiangmen in Guangdong province. We hope that construction will be complete by 2022. Once operational, we should be able to run this new detector for over 20 years as we explore neutrino oscillations, solar, supernova, and geo neutrinos, and as we search for sterile neutrinos. This, of course, combines the areas of particle physics and astrophysics.

Finally, we also conduct very high energy experiments, and members of the institute work at the ATLAS and CMS experiments at CERN, and we are also planning a new accelerator for the future Higgs factory.

JUNO is a very special experiment for the future of neutrino physics. Firstly, it has a very long baseline: it uses a very powerful reactor complex located at a distance of 53km to the detector. By making a precision measurement of the reacting neutrino spectrum, we will be able to determine the neutrino mass hierarchy, which as yet has proved to be elusive.

Of course, other neutrino experiments, such as Hyper-Kamiokande (Hyper-K) in Japan and the Deep Underground Neutrino Experiment (DUNE) in the USA will also be able to determine neutrino mass hierarchy, but they are dependent on the value of the CP phase, whereas JUNO is independent of that. We will therefore be able to make a very clean measurement of the mass hierarchy. In principle, it is also hoped that if Hyper-K and DUNE can use our clean measurement of the mass hierarchy then they will also be able to uniquely determine their CP phase. Thus, JUNO is going to be very complementary to projects taking place elsewhere.

In addition, JUNO also has the potential to measure neutrino mixing parameters with a precision of less than 1% (0.5-0.8%), which would be a factor of 10 improvement over existing precision levels, which currently stand at around 5%. This will be very useful for the future of neutrino physics, for example when looking at the unitarity of the three generations of neutrinos to see if there are any extra generations or even if there are sterile neutrinos. It will also be possible to study the non-standard interaction of neutrinos – by looking at the unitarity of the neutrino mixing matrix, you can actually look for new physics.

The JUNO detector can also be upgraded in the future to search for neutrino-less double beta decay. Once this is achieved, JUNO will be the most powerful experiment in the world dedicated to this area.

#highenergy #motivation #music #s #inspiration #energy #selflove #dance #positivevibes #mentaltoughness #live #love #livemusic #breaks #disco #new #radio #jungle #fitness #wisdom #steveindex #drumandbass #wednesdays #highvibrations #gkradio #herecomethedrums #graffitikings #graffiti #djindex.

  

 

Comments

Popular posts from this blog

new research in qauntum physics

         VISIT:https: //hep-conferences.sciencefather.com/          N ew research in  qauntum physics.                                                    Alphabet Has a Second, Secretive Quantum Computing Team Recent research in quantum physics includes the development of quantum computers, which are expected to be much more powerful than conventional computers and could revolutionize many aspects of technology, such as artificial intelligence and cryptography. Other research includes the development of quantum sensors for a variety of applications, including medical diagnostics, and the study of quantum entanglement and its potential to enable quantum computing and secure communication. Additionally, research is being conducted into the applications of quantum mechanics in materials science, such as unde...

Freezing light? Italian scientists froze fastest thing in universe, here’s how

In a rare occurrence, physics made it possible to control the fastest travelling element - light. Italian scientists have managed to freeze the light, as per reports. A recent study published in a British weekly journal reportedly revealed that light can exhibit ‘ supersolid behavior ’ a unique state of matter that flows without friction while retaining a solid-like structure. The research, led by Antonio Gianfate from CNR Nanotec and Davide Nigro from the University of Pavia, marks a significant step in understanding supersolidity in light. The scientists described their findings as “just the beginning” of this exploration, as per reports. In what can be termed as ‘manipulating photons under controlled quantum conditions ’, the scientists demonstrated that light, too, can exhibit this behaviour. (A photon is a bundle of electromagnetic energy which is massless, and travel at the speed of light) How did scientists freeze light? As we know, freezing involves lowering a liquid’s tempera...

Physicists observe a new form of magnetism for the first time

MIT physicists have demonstrated a new form of magnetism that could one day be harnessed to build faster, denser, and less power-hungry " spintronic " memory chips. The new magnetic state is a mash-up of two main forms of magnetism: the ferromagnetism of everyday fridge magnets and compass needles, and antiferromagnetism, in which materials have magnetic properties at the microscale yet are not macroscopically magnetized. Now, the MIT team has demonstrated a new form of magnetism , termed "p-wave magnetism." Physicists have long observed that electrons of atoms in regular ferromagnets share the same orientation of "spin," like so many tiny compasses pointing in the same direction. This spin alignment generates a magnetic field, which gives a ferromagnet its inherent magnetism. Electrons belonging to magnetic atoms in an antiferromagnet also have spin, although these spins alternate, with electrons orbiting neighboring atoms aligning their spins antiparalle...